
Layering As Optimization Decomposition

Mung Chiang∗, Steven H. Low †, A. Robert Calderbank‡, John C. Doyle§

April 2, 2006

Abstract

Network protocols in layered architectures have historically been obtained on an ad hoc basis, and many
of the recent cross-layer designs are conducted through piecemeal approaches. They may instead be holisti-
cally analyzed and systematically designed as distributed solutions to some global optimization problems. This
paper presents a survey of the recent efforts towards a systematic understanding of “layering” as “optimiza-
tion decomposition”, where the overall communication network is modeled by a generalized Network Utility
Maximization (NUM) problem, each layer corresponds to a decomposed subproblem, and the interfaces among
layers are quantified as functions of the optimization variables coordinating the subproblems. There can be many
alternative decompositions, each leading to a different layering architecture. This paper summarizes the cur-
rent status of horizontal decomposition into distributed computation and vertical decomposition into functional
modules such as congestion control, routing, scheduling, random access, power control, and channel coding.
Key messages and methods arising from many recent work are listed, and open issues discussed. Through case
studies, it is illustrated how “Layering as Optimization Decomposition” provides a common language to think
about layered network architecture and a unifying approach to holistically design protocol stacks.

Keywords: Adaptive coding, Cross-layer design, Congestion control, Distributed algorithm, Lagrange dual-
ity, MAC, Network utility maximization, Optimization, Power control, Reverse engineering, Routing, TCP/IP,
Scheduling, Stochastic control, Wireless ad hoc networks.
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1 Introduction

1.1 Overview

1.1.1 Structures of layered protocol stack

Layered architectures is one of the most fundamental and influential structures of network design. It adopts a
modularized and often distributed approach to network coordination and resource allocation. Each layer controls
a subset of the decision variables, and observes a subset of constant parameters and variables from other layers.
Intuitively, layered architectures enable a scalable, evolvable, and implementable network while introducing po-
tential risks to its manageability. There are clearly more than one way to “divide and conquer” the network design
problem. From a data-plane performance point of view, some layering schemes may be more efficient or more
fair than others. Focusing on resource allocation functionalities and using only performance metrics, this paper
examines the question of “how to” and “how not to” layer. The limitations of our focus, in terms of semantics
functionalities and “network X-ities” metrics, will be discussed at the end of the paper.

Each layer in the protocol stack hides the complexity of the layer below and provides a service to the layer
above. While the general principle of layering is widely recognized as one of the key reasons for the enormous
success of data networks, there is little quantitative understanding to guide a systematic, rather than an ad hoc,
process of designing layered protocol stack for wired and wireless networks. One possible perspective to rigorously
and holistically understand layering is to integrate the various protocol layers into a single coherent theory, by
regarding them as carrying out an asynchronous distributed computation over the network to implicitly solve a
global optimization problem. Different layers iterate on different subsets of the decision variables using local
information to achieve individual optimality. Taken together, these local algorithms attempt to achieve a global
objective. Such a framework of “Layering as Optimization Decomposition” exposes the interconnection between
protocol layers and can be used to study rigorously the performance tradeoff in protocol layering, as different ways
to modularize and distribute a centralized computation. Even though the design of a complex system will always
be broken down into simpler modules, this theory will allow us to systematically carry out this layering process
and explicitly trade off design objectives.

Based on the concepts of “networks as optimizers” and “layering as optimization”, the key idea in “Layering as
Optimization Decomposition” is as follows. Different decompositions of an optimization problem, in the form of a
generalized Network Utility Maximization (NUM), are mapped to different layering schemes in a communication
network, with each decomposed subproblem corresponding to a layer, and functions of primal or Lagrange dual
variables coordinating the subproblems correspond to the interfaces among the layers. Since different decom-
positions lead to alternative layering architectures, we can tackle the question “how to and how not to layer” by
investigating the pros and cons of decomposition techniques. Furthermore, by comparing the objective function
values under various forms of optimal decompositions and suboptimal decompositions, we can seek “separation
theorems” among layers: conditions under which layering incurs no loss of optimality. Robustness of these sep-
aration theorems can be further characterized by sensitivity analysis in optimization theory: how much will the
differences in the objective value (between different layering schemes) fluctuate as constant parameters in the
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generalized NUM formulation are perturbed.

The mentality of “network as an optimizer” and “protocol as a distributed solution” to some global optimization
problem (in the form of the basic NUM) has already been successfully tested in trials for Transmission Control
Protocol (TCP) [40, 109, 41]. The key innovation from this line of work [46, 65, 70, 53, 69, 118, 64, 62] is to
view each variant of congestion control protocol as a distributed algorithm to maximize the sum of source util-
ities over their transmission rates subject to capacity constraints. Other recent results also show how to reverse
engineer Border Gateway Protocols (BGP) as solving the Stable Path Problem [32], and contention-based Medium
Access Control (MAC) protocols as game-theoretic selfish utility maximization [56, 97]. Starting from a given
protocol originally designed based on engineering heuristics, reverse engineering discovers the underlying mathe-
matical problems being solved by the protocols and allows the application of derived insights to forward engineer
improvements of the protocols.

These reverse engineering successes provide one of the justifications to employ generalized versions of NUM
for systematic cross-layer design. Furthermore, utility of allocated resources to end users and elasticity of appli-
cation traffic can both be modeled through general utility functions. Utility functions also provide a measure of
resource allocation efficiency and lead to allocations satisfying fairness definitions. In general, they can be coupled
across users, and may depend on not just rates, but also other metrics such as reliability, latency, jitter, and energy.

While the application needs give rise to the objective function, i.e., network utility to be maximized, restrictions
in the communication infrastructure are translated into many constraints of a generalized NUM problem. The
resulting problem may be a very difficult nonconvex optimization with integer constraints. These generalized
NUM problems highlights the end user utilities as the ultimate objective in network design. For example, benefits
of innovations in the physical layer through better modulation and coding schemes are now characterized by the
enhancement to applications rather than just the drop in bit error rates, which the users do not directly observe.
An optimal solution to a generalized NUM formulations automatically establishes the benchmark for all layering
schemes. Indeed, layering is a human engineering effort. The problem itself does not have any pre-determined
layering architecture.

How to attain an optimal solution to a generalized NUM in a modularized and distributed way then becomes
an overarching question. Vertical decompositions across modules and horizontal decompositions across disparate
network elements can be conducted systematically through the theory of decomposition for nonlinear optimization.
Implicit or explicit message passing quantifies the amount of information sharing and decision coupling required
for a particular decomposition. There are many different ways to decompose a given problem, each of which
corresponds to a different layering architecture. Even a different representation of the same NUM problem can
lead to different decomposability structures even though the optimal solution remains the same. These decomposi-
tions, i.e., layering schemes, have different characteristics in efficiency, robustness, asymmetry of information and
control, and tradeoff between computation and communication. Some are “better” than others depending on the
criteria set by the network users and operators. A systematic exploration in the space of alternative decompositions
is possible, where each particular decomposition represents a holistically designed protocol stack.

Given the layers, crossing layers is tempting. For example, layers can be crossed for wired or wireless networks
in at least the following ways:
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• Information may be passed from one layer to another. For example, a TCP proxy at the base station of a
wireless cellular network may be informed by the physical layer that a packet loss is due to channel fading
and not congestion.

• Information from one layer may be used in another layer to either adapt its existing algorithm or create new
diversity. For example, if the medium access layer informs the routing layer about its performance, multipath
routing may be used to provide spatial diversity.

• Tasks may be jointly accomplished across the layers. For example, joint routing in the network layer and data
compression in application layer may leverage the spatial redundancy in the sensor network measurements
to reduce the network traffic load.

• Tasks may be re-divided among the layers. For example, error correction is performed in different forms in
each of the application, transport, network, link, and physical layers. The task of ensuring the accuracy of
the received bits may be re-allocated across the layers and some error checking functions may be removed
from certain layers.

As evidenced by the large and ever growing number of papers on cross layer design over the last few years,
we expect that there will be no shortage of cross layer ideas. However, any piecemeal design jointly over multiple
layers does not contribute to the understanding of the structures of network architecture any more than the ad hoc
design of just one layer. What seems to be lacking is a level ground for fair comparison among the variety of
cross layer designs, a unified view on how to and how not to layer, basic principles rigorously quantified, and
fundamental limits on the impacts of layer-crossing on network performance and robustness metrics.

“Layering as Optimization Decomposition” provides a candidate for such a unified framework.1 What is
unique about this framework is that it views the network as the optimizer itself, highlights the application needs as
the optimization objective, provides a globally optimal performance benchmark, and leads to a systematic design
of decomposed solution to attain the benchmark. Carrying the intellectual thread of “forward engineering” (solve a
given problem) and “reverse engineering” (find the problem being solved by a given protocol) one step further, the
framework naturally suggests “design for optimizability”. The difficulty of solving a particular set of subproblems
can be an indication of a poorly constructed decomposition and should prompt the search for a better alternative.

1.1.2 Network utility maximization

The basic NUM problem is the following formulation [46], known as monotropic programming and studied since
1960s. As will be presented in Section 2.1, TCP variants have recently been reverse engineered to show that they
are implicitly solving this problem, where source rate vector x is the only optimization variable, and routing matrix

1It is important to note that “Layering as Optimization Decomposition” is not the same as the generic phrase of “cross-layer optimiza-
tion”.
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R and link capacity vector c are both constants:

maximize
∑

s Us(xs)
subject to Rx ≤ c.

Utility functions Us are often assumed to be smooth, increasing, concave, and depends on local rates only, although
recent investigations have removed some of these assumptions for applications where they are invalid. Utility
functions can be determined based on any of the following: reverse-engineering (a given protocol description
implicitly dictates the underlying utility function), user perception behavior models, application traffic elasticity,
efficiency of resource allocation, and fairness among competing users.

Many of the papers on “Layering as Optimization Decomposition” are special cases of the following generic
problem [13], one of the possible formulations of a generalized NUM for the entire protocol stack:

maximize
∑

s Us(xs, Pe,s) +
∑

j Vj(wj)
subject to Rx ≤ c(w,Pe)

x ∈ C1(Pe), x ∈ C2(F) or x ∈ Π
R ∈ R, F ∈ F , w ∈ W.

(1)

Here, xs denotes the rate for source s and wj denotes the physical layer resource at network element j. The
utility functions {Us} and {Vj} may be any nonlinear, monotonic functions. R is the routing matrix, and c are the
logical link capacities as functions of both physical layer resources w and the desired decoding error probabilities
Pe. The issue of signal interference and power control can be captured in this functional dependency. The rates
must also be constrained by the interplay between channel decoding reliability and other error control mechanisms
like ARQ. This constraint set is denoted as C1(Pe). The issue of rate-reliability tradeoff and coding is captured
in this constraint. The rates are further constrained by the medium access success probability, represented by
the constraint set C2(F) where F is the contention matrix or the schedulability constraint set Π. The issue of
packet collision and medium access control is captured in this constraint. The sets of possible physical layer
resource allocation schemes, of possible scheduling or contention based medium access schemes, and of single-
path or multi-path routing schemes are represented by W,F ,R, respectively. The optimization variables are
x,w,Pe,R,F. Holding some of the variables as constants and specifying some of these functional dependencies
and constraint sets will then lead to a special class of this generalized NUM formulation.

A deterministic fluid model is used in the above formulations. Stochastic network utility maximization is an
active research area, as discussed in Section 4.4, where stochastic models are imposed at session, packet, channel,
and topology levels, raising new questions such as stochastic stability, average optimality, and outage performance.

Whether it is the basic, general, or stochastic NUM, there are three steps in the process: first formulate a
specific NUM problem that also establishes the benchmark independent of layering possibilities, then devise a
modularized and distributed solution following a particular decomposition, and finally explore the space of alter-
native decompositions that provide a choice of layered protocol stack and coupling across the layers.
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In general, there are two types of objective functions: sum of utility functions by end users, which can be
functions of rate, reliability, delay, jitter, or power level, and a network-wide cost function by network operators,
which can be functions of congestion level, energy efficiency, network lifetime, or collective estimation error.
Some of these utility functions may not have an additive structure. Maximizing a weighted sum of these utility
functions, which is the focus of this paper, is only one of the possible formulations. An alternative is multi-objective
optimization to characterize the Pareto-optimal tradeoff between the user objective and operator objective. Another
formulation is game-theoretic between users and operators, or among users or operators themselves.

1.1.3 Summary

More than just an ensemble of specific cross-layer designs for existing protocol stacks, “Layering as Optimization
Decomposition” is a mentality that views networks as optimizers, a common language that allows researchers to
quantitatively compare alternative network architectures, and a suite of methods that facilitates a systematic design
approach for modularized resource allocation.

Reverse Engineering Forward Engineering
Horizontal Decomposition Sections 2.1.2 and 2.2.1 Sections 2.1.5 and 2.2.2
Vertical Decomposition Section 3.1.1 Section 3.1

Table 1: Summary of content.

The power of “Layering as Optimization Decomposition” has been illustrated through many case studies car-
ried out by various research groups in the last couple of years, generating considerable general insights in addition
to the specific cross-layer designs. The summary list of key messages illustrate the conceptual simplicity in this
rigorous and unifying framework, which is more important than any specific cross layer design. The summary
list of main methods developed in many recent publications aims at popularizing these analytic techniques so that
future research can invoke them readily.

1.2 From Theory To Practice

1.2.1 Convex optimization

Linear programming has found important applications in communication systems for several decades. In particular,
network flow problems, i.e., minimizing linear cost subject to linear flow conservation and capacity constraints,
include important special cases such as the shortest path routing and maximum flow problems. Recently, there
have been many research activities that utilize the power of recent developments in nonlinear convex optimization
to tackle a much wider scope of problems in the analysis and design of communication systems. These research
activities are driven by both new demands in the study of communications and networking, and new tools emerging
from optimization theory. In particular, a major breakthrough in optimization over the last two decades has been the

8



Key Message Section
Existing protocols in layers 2,3,4 have been reverse engineered Section 2.1.2, 2.2.1
Reverse engineering leads to better design Section 2.1.5, 2.2.2
There is one unifying approach to cross-layer design Section 3.1
Loose coupling through layering price Section 3.1
Queue length often a right layering price, but not always Section 3.1
Many alternatives in decompositions and layering architectures Section 3.2
Convexity is key to proving global optimality Section 3.1
Decomposability is key to designing distributed solution Section 3.2
Still many open issues in modeling, stochastic dynamics, and nonconvex formulations Section 4

Table 2: Summary of 9 key messages.

Main Method Section
Reverse engineering cooperative protocol as an optimization algorithm Section 2.1.2
Lyapunov function construction to show stability Section 2.1.3
Proving convergence of dual descent algorithm Section 2.1.3
Proving stability by singular perturbation theory Section 2.1.3
Proving stability by passivity argument Section 2.1.3
Proving equilibrium properties through vector field representation Section 2.1.4
Reverse engineering non-cooperative protocol as a game Section 2.2.1
Verifying contraction mapping by bounding the Jacobian’s norm Section 2.2.1
Analyzing cross-layer interaction through generalized NUM Section 3.1.1
Log change of variables for decoupling, and computing minimum curvature needed Section 2.2.2
Dual decomposition for jointly optimal cross layer design Section 3.1.2
Computing conditions under which a general constraint set is convex Section 3.1.2
Introducing an extra “layer” to decouple the problem Section 3.1.2
End user generated pricing Section 3.1.2
Different timescales of protocol stack interactions through different decomposition methods Section 3.1.3
Maximum differential congestion pricing for node-based back-pressure scheduling Section 3.1.4
Absorbing routing functionality into congestion control and scheduling Section 3.1.4
Primal and dual decomposition for coupling constraints Section 3.2.1
Consistency pricing for decoupling coupled objective Section 3.2.2
Partial and hierarchical decomposition for architectural alternatives Section 3.2.3

Table 3: Summary of 20 main methods.
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development of powerful theoretical tools, as well as highly efficient computational algorithms like the interior-
point method, for nonlinear convex optimization, i.e., minimizing a convex function (or maximizing a concave
function as is often seen in this paper) subject to upper bound inequality constraints on other convex functions and
affine equality constraints:

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, 2, . . . ,m

Ax = c
(2)

where the variables are x ∈ Rn. The constant parameters are A ∈ Rl×n and c ∈ Rl. The objective function f0 to
be minimized and m constraint functions fi are convex functions.

Since the early 1990s, it has been recognized that the watershed between efficiently solvable optimization
problems and intractable ones is convexity. It is well known that for a convex optimization problem, a local
minimum is also a global minimum. The Lagrange duality theory is also well-developed for convex optimization.
For example, the duality gap is zero under constraint qualification conditions, such as Slater’s condition [7] that
requires the existence of a strictly feasible solution to nonlinear inequality constraints. When put in an appropriate
form with the right data structure, a convex optimization problem can also be efficiently solved numerically, such
as the primal-dual interior-point method, which has worst-case polynomial-time complexity for a large class of
functions and scales gracefully with problem size in practice.

Special cases of convex optimization include convex Quadratic Programming (QP), Second Order Cone Pro-
gramming (SOCP), and Semidefinite Programming (SDP) [7], as well as seemingly non-convex optimization prob-
lems that can be readily transformed into convex problems, such as Geometric Programming (GP) [12]. The last
decade has witnessed the appreciation-application cycle for convex optimization, where more applications are de-
veloped as more people start to appreciate the capabilities of convex optimization in modeling, analyzing, and
designing communication systems.

The phrase “optimization of communication systems” in fact carries three different meanings. In the most
straight-forward way, an analysis or design problem in a communication system may be formulated as either
minimizing a cost or maximizing a utility function over a set of variables confined within a constraint set. In
a more subtle and recent approach, emphasized in this paper, a given network protocol may be interpreted as
a distributed algorithm solving an implicitly defined global optimization problem. In yet another approach, the
underlying theory of a network control method or a communication strategy may be generalized using nonlinear
optimization techniques, thus extending the scope of applicability of the theory.

1.2.2 Practice

Industry adoption of “Layering as Optimization Decomposition” has already started. For example, insights from
reverse-engineering TCP has led to an improved version of TCP in the FAST Project (Fast AQM Scalable TCP)
[40, 109, 41]. Putting end-user application utilities as the objective function has led to a new way to leverage
innovations in the physical and link layers beyond the standard metrics such as bit error rate, e.g., in the “FAST
Copper” Project (here FAST stands for Frequency, Amplitude, Space, Time) for an order-of-magnitude boost to
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rates in fiber/DSL broadband access systems [25].

FAST [24] is a joint project between CS, CDS, EE and Physics departments at Caltech and UCLA, and involves
partners at various national laboratories around the world. It integrates theory, algorithms, implementation, and
experiment so that they inform and influence each other intimately. Its goal is to understand the current TCP
congestion control, design new algorithms, implement and test them in real high-speed global networks. We
have developed a duality model that interprets any TCP/AQM algorithm as a distributed asynchronous primal-dual
algorithm carried out over the Internet in real-time to solve the basic NUM. Different algorithms differ merely in
the utility functions they implicitly optimize. The model allows us to understand the limitations of the current TCP
and design new algorithms. Until about six years ago, the state of the art in TCP research has been simulation-
based using simplistic scenarios, with often a single bottleneck link and a single class of algorithms. We have now
a theory that can predict the equilibrium behavior of an arbitrary network under any TCP-like algorithm. Moreover,
we can prove, and design, their stability properties in the presence of feedback delay for arbitrary networks. As
explained in detail in Section 2.1.5, we have implemented the insights from this series of theoretical work in a
software prototype FAST TCP and it has been used to break world records in data transfer in the last few years.

FAST Copper [25] is a joint project at Princeton, Stanford, and Fraser Research Institute, aiming at providing at
least an order of magnitude increase in DSL broadband access speed to 50-100 Mbps, through a joint optimization
of Frequency, Amplitude, Time and Space dimensions to overcome the attenuation and crosstalk bottlenecks in
today’s DSL systems. The key idea is to treat the DSL network as a multiple input multiple output system rather
than a point-to-point channel, thus leveraging the opportunities of multi-user cooperation and mitigating the current
bottleneck due to multi-user competition. The overarching research challenge is to understand how the resulting
highly nonlinear and complicated optimization problems across the application layer, transport layer, link layer,
and physical layer can be dynamically solved. “Layering as Optimization Decomposition” provides an analytic
framework for these dynamic resource allocation problems in the interference environment of DSL broadband
access.

Clean-slate design of the entire protocol stack is another venue of application of “Layering as Optimization
Decomposition”. For example, Internet 0 [39] is a project initiated at the Center for Bits and Atoms at MIT and
jointly pursued by an industrial consortium. Its goal is to develop theory, algorithms, protocols, and implemen-
tations to connect a large number of small devices. The focus here is not the transmission speed, which will be
much smaller than on the wired Internet, but the sheer number of small devices that need simple connectivity but
are constrained by limited power, heterogeneity, and complex interactions with the physical environment. Even-
tually, “Layering as Optimization Decomposition” may be used to develop CAD (Computer Aided Design) tools
for protocol design and implementation. The idea is to treat protocols for Internet 0 as distributed algorithms to
solve an appropriately generalized NUM problem, and automatically compile and optimize computer codes to be
downloaded onto Internet 0 nodes from high level protocol specifications.
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1.3 Notation

Unless otherwise specified, vectors are denoted in boldface small letters, e.g., x with xi as its ith component;
matrices are denoted by boldface capital letters, e.g., H,W,R; and sets of vectors or matrices are denoted by
script letters, e.g., Wn, Wm, Rn, Rm. Inequalities between two vectors denote component-wise inequalities. We
will use the terms “user”, “source”, “session”, and “connection” interchangeably.

Due to the wide coverage of materials in this survey paper, notational conflicts occasionally arise. Consistency
is maintained within any section, and main notation is summarized in the tables of notation for each section.

2 Horizontal Decomposition

It is well-known that physical layer algorithms try to solve the data transmission problem formulated by Shannon:
maximizing data rate subject to the constraint of vanishing error probability. Widely used network protocols, such
as TCP, BGP, and IEEE 802.11 DCF, were instead designed based primarily on engineering intuitions and ad hoc
heuristics. Recent progress have put protocols in layers 2-4 of the standard reference model on a mathematical
foundation as well:

• The congestion control functionality of TCP has been reverse engineered to be implicitly solving the ba-
sic NUM problem [62, 91]. While heterogeneous congestion control protocols do not solve an underlying
NUM problem, its equilibrium and dynamic properties can still be analyzed through a vector field represen-
tation and the Poincare-Hopf index theorem [101], which show that bounded heterogeneity implies global
uniqueness and local stability of network equilibrium.

• IGP (Interior Gateway Protocol) of IP routing is known to solve variants of the shortest path problem, and the
policy-based routing protocol in BGP (Border Gateway Protocol) has recently been modeled as the solution
to the Stable Path Problem [32].

• Scheduling based MAC protocols are known to solve variants of maximum weight matching, and random
access (contention based MAC) protocols have recently been reverse engineered as a non-cooperative utility
maximization game [56, 97].

In this section, the reverse and forward engineering results for TCP congestion control and random access
MAC are summarized.

2.1 TCP Congestion Control

2.1.1 Congestion control protocols

Congestion control is a distributed mechanism to share link capacities among competing users. In this section, a
network is modeled as a set L of links (scarce resources) with finite capacities c = (cl, l ∈ L). They are shared by
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a set N of sources indexed by s. Each source s uses a set L(s) ⊆ L of links. Let S(l) = {s ∈ N | l ∈ L(s)} be
the set of sources using link l. The sets {L(s)} define an L×N routing matrix2

Rls =
{

1 if l ∈ L(s), i.e., source s uses link l
0 otherwise

Associated with each source s is its transmission rate xs(t) at time t, in packets/sec. Associated with each link l is
a scalar congestion measure λl(t) ≥ 0 at time t. We will call λl(t) the link (congestion) price.

A congestion control algorithm consists of two components: a source algorithm that dynamically adjusts its
rate xs(t) in response to prices λl(t) in its path, and a link algorithm that updates, implicitly or explicitly, its price
λl(t) and sends it back, implicitly or explicitly, to sources that use link l. On the current Internet, the source
algorithm is carried out by Transmission Control Protocol (TCP), and the link algorithm is carried out by (active)
queue management (AQM) schemes such as DropTail or RED [29]. Different protocols use different metrics to
measure congestion, e.g., TCP Reno [30, 93] and its variants, use loss probability as the congestion measure, and
TCP Vegas [8] and FAST [40, 109] use queueing delay as the congestion measure [64]. Both are implicitly updated
at the links and implicitly fed back to sources through end-to-end loss or delay, respectively.

In this section, we show that a large class of congestion control algorithms can be interpreted as distributed
algorithms to solve a global optimization problem. Specifically, we associate with each source s a utility function
Us(xs) as a function of its rate xs. Consider the network utility maximization problem proposed in [46], which we
will refer to as the basic NUM:

maximize
∑

s Us(xs)
subject to Rx ≤ c,

(3)

and its Lagrangian dual problem [65]:

minimizeλ≥0 D(λ) :=
∑

s

max
xs≥0

(
Us(xs)− xs

∑

l

Rlsλl

)
+

∑

l

clλl. (4)

We now present a general model of congestion control algorithms and show that they can be interpreted as dis-
tributed algorithms to solve NUM (3) and its dual (4).

Let yl(t) =
∑

s Rlsxs(t) be the aggregate source rate at link l and let qs(t) =
∑

l Rlsλl(t) be the end-to-end
price for source s. In vector notation, we have

y(t) = Rx(t) and q(t) = RT λ(t).

Here, x(t) = (xs(t), s ∈ N) and q(t) = (qs(t), s ∈ N) are in RN
+ , and y(t) = (yl(t), l ∈ L) and λ(t) =

(λl(t), l ∈ L) are in RL
+.

In each period, the source rates xs(t) and link prices λl(t) are updated based on local information. Source s can
observe its own rate xs(t) and the end-to-end price qs(t) of its path, but not the vector λ(t), nor other components

2We abuse notation to use L and N to denote both sets and their cardinalities.
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of x(t) or q(t). Similarly, link l can observe just local price λl(t) and flow rate yl(t). The source rates xs(t) are
updated according to

xs(t + 1) = Fs(xs(t), qs(t)) (5)

for some nonnegative functions Fs. The link congestion measure λl(t) is adjusted in each period based only on
λl(t) and yl(t), and possibly some internal (vector) variable vl(t), such as the queue length at link l. This can be
modeled by some functions (Gl,Hl): for all l,

λl(t + 1) = Gl(yl(t), λl(t),vl(t)) (6)

vl(t + 1) = Hl(yl(t), λl(t),vl(t)) (7)

where Gl are non-negative so that λl(t) ≥ 0. Here, Fs model TCP algorithms (e.g., Reno or Vegas) and (Gl,Hl)
model AQM’s (e.g., RED, REM). We will often refer to AQM’s by Gl, without explicit reference to the internal
variable vl(t) or its adaptation Hl. We now present some examples.

TCP Reno/RED
The congestion control algorithm in the large majority of current TCP implementations is (enhanced version of)

TCP Reno first proposed in [30]. A source maintains a parameter called window size that determines the number of
packets it can transmit in a round-trip time (RTT), the time from sending a packet to receiving its acknowledgment
from the destination. This implies that the source rate is approximately equal to the ratio of window size to RTT,
in packets per second. The basic idea of (the congestion avoidance phase of) TCP Reno is for a source to increase
its window by one packet in each RTT and half its window when there is a packet loss. This can be modeled by
(see e.g., [62, 53]) the source algorithm Fs(t + 1) := Fs(xs(t), qs(t)):

Fs(t + 1) =
[
xs(t) +

1
T 2

s

− 2
3
qs(t)x2

s(t)
]+

(8)

where Ts is the RTT of source s, i.e., the time it takes for s to send a packet and receive its acknowledgement from
the destination. Here we assume Ts is a constant even though in reality its value depends on the congestion level
and is generally time-varying. The quadratic term signifies the property that, if rate doubles, the multiplicative
decrease occurs at twice the frequency with twice the amplitude.

The AQM mechanism of RED [29] maintains two internal variables, the instantaneous queue length bl(t) and
average queue length rl(t). They are updated according to

bl(t + 1) = [bl(t) + yl(t)− cl]
+ (9)

rl(t + 1) = (1− ωl)rl(t) + ωlbl(t) (10)

where ωl ∈ (0, 1). Then, (the “gentle” version of) RED marks a packet with a probability λl(t) that is a piecewise
linear increasing function of rl(t) with constants ρ1, ρ2, Ml, bl, bl:

λl(t) =





0 rl(t) ≤ bl

ρ1(rl(t)− bl) bl ≤ rl(t) ≤ bl

ρ2(rl(t)− bl) + Ml bl ≤ rl(t) ≤ 2bl

1 rl(t) ≥ 2bl.

(11)
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The equations (9)–(11) define the model (G,H) for RED.

TCP Vegas/DropTail
A duality model of Vegas has been developed and validated in [64]; see also [70]. We consider the situation

where the buffer size is large enough to accommodate the equilibrium queue length so that Vegas sources can
converge to the unique equilibrium. In this case, there is no packet loss in equilibrium.

Unlike TCP Reno, Vegas uses queueing delay as congestion measure, λl(t) = bl(t)/cl, where bl(t) is the queue
length at time t. The update rule Gl(yl(t), λl(t)) is given by (dividing both sides of (9) by cl):

λl(t + 1) =
[
λl(t) +

yl(t)
cl

− 1
]+

. (12)

Hence, AQM for Vegas does not involve any internal variable. The update rule Fs(xs(t), qs(t)) for source rate is
given by:

xs(t + 1) = xs(t) +
1

T 2
s (t)

1(αsds − xs(t)qs(t)) (13)

where αs is a parameter of Vegas, ds is the round-trip propagation delay of source s, and 1(z) = 1 if z > 0, −1 if
z < 0, and 0 if z = 0. Here Ts(t) = ds + qs(t) is the RTT at time t.

FAST/DropTail
The FAST algorithm is developed in [40, 109, 41]. Let ds denote the round-trip propagation delay of source s.

Let λl(t) denote the queueing delay at link l at time t. Let qs(t) =
∑

l Rlsλl(t) be the round-trip queueing delay,
or in vector notation, q(t) = RT λ(t). Each source s adapts its window Ws(t) periodically according to:

Ws(t + 1) = γ

(
dsWs(t)

ds + qs(t)
+ αs

)
+ (1− γ)Ws(t) (14)

where γ ∈ (0, 1] and αs > 0 is a protocol parameter. A key departure from the model described above and
those in the literature is that, here, we assume that a source’s send rate cannot exceed the throughput it receives.
This is justified because of self-clocking: within one round-trip time after a congestion window is increased, packet
transmission will be clocked at the same rate as the throughput the flow receives. A consequence of this assumption
is that the link queueing delay vector, λ(t), is determined implicitly by the instantaneous window size in a static
manner: given Ws(t) = Ws for all s, the link queueing delays λl(t) = λl ≥ 0 for all l are given by:

∑
s

Rls
Ws

ds + qs(t)

{
= cl if λl(t) > 0
≤ cl if λl(t) = 0

(15)

where again qs(t) =
∑

l Rlsλl(t).

Hence, FAST is defined by the discrete-time model (14)–(15) of window evolution. The sending rate is then
defined as xs(t) := Ws(t)/(ds(t) + qs(t)).
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2.1.2 Reverse Engineering: Congestion control as distributed solution of basic NUM

Under mild assumptions on (F,G,H), it can be shown using Kakutani’s fixed point theorem that equilibrium
(x, λ) of (5)–(7) exists and is unique [70, 101]. The fixed point of (5) defines an implicit relation between equilib-
rium rate xs and end-to-end congestion measure qs:

xs = Fs(xs, qs).

Assume Fs is continuously differentiable and ∂Fs/∂qs 6= 0 in the open set A := {(xs, qs)|xs > 0, qs > 0}. Then,
by the implicit function theorem, there exists a unique continuously differentiable function fs from {xs > 0} to
{qs > 0} such that

qs = fs(xs) > 0. (16)

To extend the mapping between xs and qs to the closure of A, define

fs(0) = inf {qs ≥ 0 | Fs(0, qs) = 0}. (17)

If (xs, 0) is an equilibrium point, Fs(xs, 0) = xs, then define

fs(xs) = 0 (18)

Define the utility function of each source s as

Us(xs) =
∫

fs(xs)dxs, xs ≥ 0, (19)

which is unique up to a constant.

Being an integral, Us is a continuous function. Since fs(xs) = qs ≥ 0 for all xs, Us is nondecreasing. We
assume that fs is a nonincreasing function – the more severe the congestion, the smaller the rate. This implies
that Us is concave. If fs is strictly decreasing, then Us is strictly concave since U ′′

s (xs) < 0. An increasing utility
function implies a greedy source (a larger rate yields a higher utility) and concavity implies diminishing marginal
return.

We assume

C1: For all s ∈ S and l ∈ L, Fs and Gl are non-negative functions. Fs are continuously differentiable and
∂Fs/∂qs 6= 0 in {(xs, qs)|xs > 0, qs > 0}; moreover, fs in (16) are strictly decreasing.

C2: R has full row rank.

C3: If λl = Gl(yl, λl,vl) and vl = Hl(yl, λl,vl), then yl ≤ cl with equality if λl > 0.
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Condition C1 guarantees that (x(t), λ(t)) ≥ 0 and (x∗, λ∗) ≥ 0, and that utility functions Us exist and are
strictly concave. C2 guarantees uniqueness of equilibrium price vector λ∗. C3 guarantees the primal feasibility
and complementary slackness of (x∗, λ∗). We can regard congestion control algorithms (5)–(7) as distributed
primal-dual algorithms to solve the NUM (3) and its dual (4) [62].

Theorem 1. Suppose assumptions C1 and C2 hold. Then (5)–(7) has a unique equilibrium (x∗,λ∗). Moreover, it
solves the primal problem (3) and the dual problem (4) with utility function given by (19) if and only if C3 holds.

Hence the various TCP/AQM protocols can be modeled as different distributed solutions (F,G,H) to solve (3)
and its dual (4), with different utility functions Us. Theorem 1 characterizes a large class of protocols (F,G,H)
that admits such an interpretation. This interpretation is the consequence of end-to-end control: it holds as long as
the end-to-end congestion measure to which the TCP algorithm reacts is the sum of the constituent link congestion
measures, and that the link prices are independent of sources (this would not be true in the heterogeneous protocol
case as in Subsection 2.1.4). Note that the definition of utility function Us depends only on TCP algorithm Fs.
The role of AQM (G,H) is to ensure that the complementary slackness condition of problem (5)–(7) is satisfied
(condition C3). The complementary slackness has a simple interpretation: AQM should match input rate to capac-
ity to maximize utilization at every bottleneck link. Any AQM that stabilizes queues possesses this property and
generates a Lagrange multiplier vector λ∗ that solves the dual problem.

The utility functions of several proposed TCP algorithms turn out to belong to a simple class of functions
defined in [70] that is parameterized by a scalar parameter αs ≥ 0:

Us(xs) =
{

ws log xs αs = 1
ws(1− αs)−1x1−αs

s α 6= 0

where weight ws > 0. In particular, TCP Vegas, FAST, and Scalable TCP correspond to αs = 1, HTCP to
αs = 1.2, TCP Reno to αs = 2, and maxmin fairness to αs = ∞. Maximizing α-fair utility leads to optimizers
that satisfy the definition of α-fair resource allocation in the economics literature.

Method 1. Reverse engineering cooperative protocol as an optimization algorithm.

The potentials and risks of networks comes from the interconnection of local algorithms. Often, interesting
and counter-intuitive behaviors arise in such a setting where users interact through multiple shared links in intricate
and surprising ways. Reverse engineering of TCP/AQM has also led to a deeper understanding of throughput and
fairness behavior in large scale TCP networks. For example, there is a general belief that one can design systems to
be efficient or fair, but often not both. Many papers in the networking, wireless, and economics literature provide
concrete examples in support of this intuition. We proved in [98] an exact condition under which this conjecture
is true for general TCP networks using the duality model of TCP/AQM. This condition allows us to produce the
first counter-example and trivially explains all the supporting examples we found in the literature. Surprisingly, in
our counter-example, a fairer throughput allocation is always more efficient. It implies for example that maxmin
fair allocation can achieve higher aggregate throughput on certain networks. Intuitively, we might expect that the
aggregate throughput will always rise as long as some links increase their capacities and no links decrease theirs.
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This turns out not to be the case, and we characterize exactly the condition under which this is true in general
TCP networks. Not only can the aggregate throughput be reduced when some link increases its capacity, more
strikingly, it can also be reduced even when all links increase their capacities by the same amount. Moreover, this
holds for all fair bandwidth allocations. This paradoxical result seems less surprising in retrospect: according to
the duality model of TCP/AQM, raising link capacities always increases the aggregate utility, but mathematically
there is no a priori reason that it should also increase the aggregate throughput. If all links increase their capacities
proportionally, however, the aggregate throughput will indeed increase, for α-fair utility functions.

2.1.3 Stability of distributed solution

Theorem 1 characterizes the equilibrium structure of congestion control algorithms (5)–(7). We now discuss its
stability. We assume conditions C1 and C2 in this subsection so that there is a unique equilibrium (x∗,λ∗).

Roughly speaking, an algorithm is said to be locally asymptotically stable if it converges to the unique equi-
librium starting from a neighborhood of the equilibrium, and globally asymptotically stable if it converges starting
from any initial state. Global asymptotic stability in the presence of feedback delay is desirable but generally hard
to prove. Most papers in the literature analyze global asymptotic stability in the absence of feedback delay, or local
stability in the presence of feedback delay. Proof techniques that have been used for global asymptotic stability in
the absence of feedback delay include Lyapunov stability theorem, gradient decent method, passivity technique,
and singular perturbation theory. In the following, we summarize some representative algorithms and illustrate
how these methods are used to prove their stability in the absence of feedback delay. For analysis with delay, see,
e.g., [78, 79, 103, 104] for local stability of linearized systems and [65, 81, 80, 84] for global stability; see also
surveys in [45, 66, 91] for further references. In particular, unlike the Nyquist argument, [81] handles nonlinearity
and delay with Lyapunov functionals.

Consider the algorithm (using a continuous-time model) of [46]:

ẋs = κsxs(t)
(
U ′

s(xs(t))− qs(t)
)

(20)

λl(t) = gl(yl(t)) (21)

where κs > 0 is a constant. This is called a primal algorithm which has come to mean that there is dynamics
only in the source control law but not the link control law. To motivate (20)–(21), note that qs(t) is the unit price
for bandwidth that source s faces end-to-end. The marginal utility U ′

s(xs(t)) can be interpreted as source s’s
willingness to pay when it transmits at rate xs(t). Then, according to (20), source s increases its rate (demand for
bandwidth) if the end-to-end bandwidth price is less than s’s willingness to pay, and decreases it otherwise. Since
gl is an increasing function, the price increases as the aggregate demand for bandwidth at link l is large. To prove
that (20)–(21) is globally asymptotically stable, consider the function

V (x) :=
∑

s

Us(xs)−
∑

l

∫ yl

0
gl(z)dz. (22)
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Using (20)–(21), it is easy to check that

V̇ :=
d

dt
V (x(t)) =

{
> 0 for all x(t) 6= x∗

= 0 if x(t) = x∗

where x∗ is the unique maximizer of the strictly concave function V (x). Hence V (x) is a Lyapunov function
for the dynamical system (20)–(21), certifying its global asymptotic stability. The function V (x) in (22) can be
interpreted as the penalty-function version of the NUM (3). Hence the algorithm (20)–(21) can also be thought of
as a gradient ascent algorithm to solve the approximate NUM.

Method 2. Lyapunov function construction to show stability.

A dual algorithm is proposed in [65]:

λl(t + 1) = [λl(t) + γ(yl(t)− cl)]
+ (23)

xs(t) = U
′−1
s (qs(t)) (24)

where U−1′
s is the inverse of U ′

s. The algorithm is derived as the gradient projection algorithm to solve the dual
(4) of NUM. The source algorithm (24) is called the demand function in economics: the larger the end-to-end
bandwidth price qs(t), the smaller the demand xs(t). The link algorithm (23) is the law of supply and demand:
if demand yl(t) exceeds supply, increase the price λl(t); otherwise, decrease it. By showing that the gradient
∇D(λ) of the dual objective function in (4) is Lipschitz, it is proved in [65] that, provided the stepsize γ is small
enough, x(t) converges to the unique primal optimal solution of NUM and λ(t) converges to its unique dual
solution. The idea is to show that the dual objective function D(λ(t)) strictly decreases in each step t. Hence
one can regard D(λ) as a Lyapunov function in discrete time3. The same idea is extended in [65] to prove global
asymptotic stability in an asynchronous environment where the delays between sources and links can be substantial,
diverse, and time-varying, sources and links can communicate at different times and with different frequencies, and
information can be outdated or out of order.

Method 3. Proving convergence of dual descent algorithm through descent lemma.

Several variations of the primal and dual algorithms above can all maintain local stability in the presence of
feedback delay [78, 79, 103, 104]. They are complementary in the sense that the primal algorithm has dynamics
only at the sources, allows arbitrary utility functions and therefore arbitrary fairness, but typically has low link
utilization, whereas the dual algorithm has dynamics only at the links, achieves full link utilization, but requires a
specific class of utility functions (fairness) to maintain local stability in the presence of arbitrary feedback delays.
The next algorithm has dynamics at both. It allows arbitrary utility functions, achieves arbitrarily close to full link
utilization, and can maintain local stability in the presence of feedback delay. Algorithms that have dynamics at
both links and sources are called primal-dual algorithms. The algorithm of [52] extends the primal algorithm (20)–
(21) to a primal-dual algorithm and the algorithm of [79] extends the dual algorithm (23)–(24) to a primal-dual

3Indeed, for a continuous-time version of (23)–(24), it is trivial to show that D(λ) is a Lyapunov function.
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algorithm. The paper [79] focuses on local stability in the presence of feedback delay. We now summarize the
proof technique in [52] for global stability in the absence of feedback delay.

The algorithm of [52] uses a source algorithm that is similar to (20):

ẋi(t) = wi − 1
U ′

i(xi(t))

∑

l

Rliλl(t). (25)

Its link algorithm AVQ (adaptive virtual queue) maintains an internal variable at each link called the virtual capacity
c̃l that is dynamically updated:

˙̃cl =
{ γ

∂gl/∂c̃l
(cl − yl(t)) if c̃l ≥ 0

0 if c̃l = 0 and yl(t) > cl
(26)

where γ > 0 is a gain parameter and gl is a link “marking” function that maps aggregate flow rate yl(t) and virtual
capacity c̃l into a price:

λl(t) = gl(yl(t), c̃l(t)). (27)

Using singular perturbation theory, it is proved in [52] that, under (25)–(27), x(t) converges exponentially to
the unique solution of the NUM, provided γ is small enough. Furthermore, λ(t) then converges to the optimal
(Lagrange multiplier) of the dual problem. The idea is to separately consider the stability of two approximating
subsystems that are at different timescales when γ is small. The boundary-layer system approximates the source
dynamics and assumes that the virtual capacity c̃l are constants at the fast timescale:

ẋs = ws − 1
U ′

s(xs(t))

∑

l

Rlsgl(y(t), c̃l). (28)

The reduced system approximates the link dynamics and assumes the source rates xs are the unique maximizers
of (22):

˙̃cl = cl − yl (29)

where yl =
∑

l Rlsxs are constants and xs are the unique maximizers of V (x) defined in (22). Now we already
know from above that the boundary-layer system (28) is asymptotically stable. In [52], it is further shown that it is
exponentially stable uniformly in c̃, and that the reduced system (29) is exponentially stable provided the trajectory
remains in a compact set. Singular perturbation theory then implies that the original system (25)–(27) is globally
exponentially stable provided γ is small enough (and the initial state (x(0), λ(0)) is in a compact set).

Method 4. Proving stability by singular perturbation theory.

A different approach to prove global asymptotic stability for primal-dual algorithms uses passivity techniques
developed in [110]. A system, described by its state z(t), input u(t) and output v(t), is called passive if there are
positive semidefinite functions V (x) ≥ 0 and W (x) ≥ 0 such that

V̇ (x(t)) ≤ −W (x(t)) + uT (t)v(t).
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V (x) is called a storage function. The passivity theorem states that the feedback interconnection of two passive
systems is globally asymptotically stable and

V (x) := V1(x) + V2(x)

is a Lyapunov function for the feedback system, provided one of the storage functions V1, V2 of the individual
systems are positive definite and radially unbounded. Consider the following variants of the primal algorithm
(20)–(21):

ẋs(t) = κs(U ′
s(xs(t))− qs(t)) (30)

λl(t) = gl(yl(t)). (31)

To show that it is the feedback interconnection of two passive systems, the trick is to consider the forward system
from λ(t) − λ∗ to ẏ(t), and the backward system from ẏ(t) to λ(t) − λ∗. From λ(t) − λ∗ to ẏ(t), the storage
function is

V1(x) =
∑

s

xsq
∗
s − Us(xs).

Then V1(x) is a positive definite function since its Hessian is a positive definite matrix for all x. Moreover, it can
be shown, using q(t) = RT λ(t), that

V̇1(x) = −
∑

s

κs

(
qs(t)− U ′

s(xs(t))
)2 + (λ(t)− λ∗)T ẏ

and hence the forward system from λ(t) − λ∗ to ẏ(t) is passive. For the reverse system, consider the storage
function

V2(y − y∗) =
∑

l

∫ y∗l

yl

gl(z)− gl(z∗)dz.

V2 is positive semidefinite function since its Hessian is a positive semidefinite matrix. Moreover

V̇2 = (λ(t)− λ∗)T ẏ,

and hence the reverse system is passive. Then V (x) := V1(x) + V2(x) can be used as a Lyapunov function for the
feedback system, because

V̇ = −
∑

s

κs

(
qs(t)− U ′

s(xs(t))
)2

< 0 except for x(t) ≡ x∗.

This implies global asymptotic stability.

The same argument proves the global asymptotic stability of the dual algorithm ((23),24) [110]. Moreover,
since primal source algorithm from λ− λ∗ to y− y∗ and the dual link algorithm from y− y∗ to λ− λ∗ are both
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passive, the passivity theorem asserts the global asymptotic stability of their feedback interconnection, i.e., that of
the following primal-dual algorithm:

ẋs = κs(U ′
s(xs(t))− qs(t))+xs

λ̇l = γl(yl(t)− cl)+λl

where (h)+z = 0 if z = 0 and h < 0, and = h otherwise. The global asymptotic stability of the AVQ algorithm
(25)–(26) is similarly proved in [110].

Method 5. Proving stability by passivity argument.

2.1.4 Heterogeneous congestion control protocols

A key assumption in the current model (5)–(7) is that the link prices λl(t) depend only on links but not sources,
i.e., the sources are homogeneous in that, even though they may control their rates using different algorithms Fs,
they all adapt to the same type of congestion signals, e.g., all react to loss probabilities, as in TCP Reno, or all
to queueing delay, as in TCP Vegas or FAST. When sources with heterogeneous protocols that react to different
congestion signals share the same network, the current convex optimization and duality framework is no longer
applicable. This is modeled in [101, 99] by introducing price mapping functions ms

l that maps link prices λl to
“effective prices” seen by sources s. However, one can no longer interpret congestion control as a distributed
solution of the basic NUM when there are heterogeneous protocols. In this subsection, we summarize the main
results of [101] on the equilibrium structure of heterogeneous protocols. Dynamic properties have also recently
been characterized.

Suppose there are J different protocols indexed by superscript j, and N j sources using protocol j, indexed by
(j, s) where j = 1, . . . , J and s = 1, . . . , N j . The total number of sources is N :=

∑
j N j . The L×N j routing

matrix Rj for type j sources is defined by Rj
ls = 1 if source (j, s) uses link l, and 0 otherwise. The overall routing

matrix is denoted by

R =
[

R1 R2 · · · RJ
]
.

Every link l has an “intrinsic price” λl. A type j source reacts to the “effective price” mj
l (λl) in its path, where

mj
l is a price mapping function, which can depend on both the link and the protocol type. By specifying functions

mj
l , we can let the link feed back different congestion signals to sources using different protocols, for example,

Reno with packet losses and Vegas with queueing delay. Let mj(λ) = (mj
l (λl), l = 1, . . . L) and m(λ) =

(mj(λl), j = 1, . . . J).

The aggregate prices for source (j, s) is defined as

qj
s =

∑

l

Rj
lsm

j
l (λl). (32)
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Let qj = (qj
s, s = 1, . . . , N j) and q = (qj , j = 1 . . . , J) be vectors of aggregate prices. Then qj =

(
Rj

)T mj(λ)
and q = RTm(λ). Let xj be a vector with the rate xj

s of source (j, s) as its sth entry, and x be the vector of xj :

x =
[

(x1)T , (x2)T , . . . , (xJ)T
]T

.

Source (j, s) has a utility function U j
s (xj

s) that is strictly concave increasing in its rate xj
s. Let U = (U j

s , s =
1, . . . , N j , j = 1, . . . , J). We call (c,m,R,U) a network with heterogeneous congestion control protocols.

A network is in equilibrium, or the link prices λ and source rates x are in equilibrium, when each source (j, s)
maximizes its net benefit (utility minus bandwidth cost), and the demand for and supply of bandwidth at each
bottleneck link are balanced. Formally, a network equilibrium is defined as follows.

Given any prices λ, we assume that the source rates xj
s are uniquely determined by

xj
s

(
qj
s

)
=

[(
U j

s

)′−1 (
qj
s

)]+
.

This implies that the source rates xj
s uniquely solve maxz≥0 [U j

s (z) − zqj
s]. As usual, we use xj

(
qj

)
=(

xj
s

(
qj
s

)
, s = 1, . . . , N j

)
and x(q) =

(
xj

(
qj

)
, j = 1, . . . , J

)
to denote the vector-valued functions composed

of xj
s. Since q = RTm(λ), we often abuse notation and write xj

s(λ),xj(λ),x(λ). Define the aggregate source
rates y(λ) = (yl(λ), l = 1, . . . , L) at links l by:

yj(λ) = Rjxj(λ), y(λ) = Rx(λ). (33)

In equilibrium, the aggregate rate at each link is no more than the link capacity, and they are equal if the link price
is strictly positive. Formally, we call λ an equilibrium price, a network equilibrium, or just an equilibrium if it
satisfies (from (32)–(33))

diag(λl)(y(λ)− c) = 0, y(λ) ≤ c, λ ≥ 0. (34)

The current theory corresponds to J = 1. When there are J > 1 types of prices, the current duality theory
breaks down because there cannot be more than one Lagrange multiplier at each link. In general, an equilibrium
no longer maximizes aggregate utility, nor is it unique. It is proved in [101] that, under mild assumptions, an
equilibrium always exists. There can be networks (R, c,m,U) that have uncountably many equilibria, but except
for a set of measure zero, all networks have finitely many equilibria. Moreover, Poincare-Hopf index theorem
implies that the number of equilibria is necessarily odd. Specifically, suppose the following assumptions hold:

C4: Price mapping functions mj
l are continuously differentiable in their domains and strictly increasing with

mj
l (0) = 0.

C5: For any ε > 0, there exists a number λmax such that if λl > λmax for link l, then

xj
i (λ) < ε for all (j, i) with Rj

li = 1.
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C6: Every link l has a single-link flow (j, i) with
(
U j

i

)′
(cl) > 0.

Assumption C6 can be relaxed; see [90]. We call an equilibrium λ∗ locally unique if ∂y/∂λ 6= 0 at λ∗. We call a
network (c,m,R,U) regular if all equilibrium points are locally unique.

Theorem 2. 1. There exists an equilibrium price λ∗ for any network (c,m,R,U).

2. Moreover, the set of link capacities c for which not all equilibrium points are locally unique (i.e., the network
is not regular) has Lebesgue measure zero in RL

+.

3. A regular network has finite and odd number of equilibrium points.

Method 6. Proving equilibrium properties through vector field representation and Poincare-Hopf Index Theorem.

Despite the lack of an underlying NUM, heterogeneous protocols are still Pareto efficient for general networks.
Moreover, the loss of optimality can be bounded in terms of the slope of the price mapping functions mj

l . Specif-
ically, suppose we use the objective value V ∗ of the following NUM as a measure of optimality for heterogenous
protocols

V ∗ := maximize
∑

j

∑
s U j

s (xj
s)

subject to Rx ≤ c
(35)

Let V (λ∗) :=
∑

j

∑
s U j

s (xj
s(λ∗)) be the utility achieved by any equilibrium λ∗ of the heterogeneous protocol.

Then it can be shown that, for any equilibrium λ∗,

V (λ∗)
V ∗ ≥ min ṁj

l (λ)

max ṁj
l (λ)

where ṁj
l denotes the derivative of mj

l , and the minimization and maximization are over all types j, all links l

used by all type j flows, and all prices λ. For common AQM schemes such as RED with (piecewise) linear mj
l ,

the bound reduces to a simple expression in terms of their slopes.

For a homogeneous congestion control protocol, the utility functions determine how bandwidth is shared
among all the flows. For heterogeneous protocols, how is bandwidth shared among these protocols (inter-protocol
fairness), and how is it shared among flows within each protocol (intra-protocol fairness)? It is shown in [99] (and
a generalization of results there) that any desired degree of fairness among the different protocols is achievable in
general networks by appropriate linear scaling of utility functions. Within each protocol, the flows would share
the bandwidth among themselves as if they were in a single-protocol network according to their own utility func-
tions, except that the link capacities are reduced by the amount consumed by the other protocols. In other words,
intra-protocol fairness is unaffected by the presence of other protocols.

Theorem 2 guarantees local unique equilibrium points for almost all networks under mild conditions. If the
degree of heterogeneity, as measured by the slopes ṁj

l of the price mapping functions mj
l is small, then global
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uniqueness is guaranteed: if ṁj
l do not differ much across source types at each link, or they do not differ much

along links in every source’s path, the equilibrium is globally unique. Moreover, under this condition, global
uniqueness is equivalent to local stability. Specifically, consider the dual algorithm (in continuous-time):

λ̇l = γ(yl(t)− cl)
xj

s(t) = U
′−1
s (qj

s(t))

where the effective prices qj
s(t) is defined by (32) (compare with (23,24) in the homogeneous case). The linearized

system with a small perturbation δλ around an equilibrium point λ∗ is, in vector form,

δλ̇ = γ
∂y

∂λ
(λ∗)δλ. (36)

The equilibrium λ∗ is called locally stable if all the eigenvalues of ∂y/∂λ(λ∗) are in the left-half plane. Given the
price mapping functions mj

l , we say their degree of heterogeneity is small if they satisfy any one of the following
conditions:

1. For each l = 1, . . . , L, j = 1, . . . , J

ṁj
l (λ

∗) ∈
[
al, 2

1
L al

]
for some al > 0 for any equilibrium λ∗. (37)

2. For all j = 1, . . . , J , l = 1, . . . , L

ṁj
l ∈

[
aj , 2

1
L aj

]
for some aj > 0 for any equilibrium λ∗. (38)

Theorem 3. For almost all networks (c,m,R,U),

1. Suppose their degree of heterogeneity is small, then the equilibrium is globally unique. Moreover, it is locally
stable.

2. Conversely, if all equilibrium points are locally stable, it is also globally unique.

Asymptotically when L →∞, both conditions (37) and (38) converge to a single point. Condition (37) reduces
to ṁj

l = al which essentially says that all protocols are the same (J = 1). Condition (38) reduces to ṁj
l = aj ,

which is the case where price mapping functions mj
l are linear and link independent. Various special cases are

shown to have a globally unique equilibrium in [101].

First recall that since a network of homogeneous protocols solves the basic NUM, it always has a unique
equilibrium point as long as the routing matrix R has full row rank. The equilibrium source rates x∗ does not
depend on link parameters, such as buffer size, as long as the AQM guarantees complementary slackness condition
for the basic NUM. Moreover, x∗ does not depend on the flow arrival pattern. These properties no longer hold
in the heterogeneous case. We now present a simulation using ns2 (Network Simulator 2) that shows that x∗ can
depend on the flow arrival pattern because of the existence of multiple equilibria.
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The topology of this network is shown in Figure 1. All links run the RED algorithm. Links 1 and 3 are each
configured with 9.1pkts per ms capacity (equivalent to 111 Mbps), 30 ms one-way propagation delay and a buffer
of 1500 packets. RED parameter is set to be (b, b, ρ1) = (300, 1500, 10−4). Link 2 has a capacity of 13.8 pkts per
ms (166 Mbps) with 30 ms one-way propagation delay and buffer size of 1500 packets. RED parameter is set to
(0, 1500, 0.1). There are 8 Reno flows on path 3 utilizing all the three links, with one-way propagation delay of
90 ms. There are two FAST flows on each of paths 1 and 2. Both of them have one-way propagation delay of 60
ms. All FAST flows use a common parameter value α = 50 packets. Two sets of simulations have been carried

Link1 Link2 Link3

Path3

Path1 Path2

Figure 1: Multiple equilibria scenario.

out with different starting times for Reno and FAST flows. One set of flows (Reno or FAST) starts at time zero,
and the other set starts at the 100-th seconds. Figure 2 shows the sample throughput trajectories of one of FAST
flows and one of Reno flows. The large difference in the rate allocations of FAST and Reno between these two

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.5

1

1.5

2

2.5

3

3.5

4

time(sec)

th
ro

ug
hp

ut
 (

pk
t /

 m
s)

FAST
Reno

(a) FAST starts first

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.5

1

1.5

2

2.5

3

3.5

4

time(sec)

th
ro

ug
hp

ut
 (

pk
t /

 m
s)

FAST
Reno

(b) Reno starts first

Figure 2: Sample throughput trajectories of FAST and Reno.

scenarios results from that the network reaches two different equilibrium points depending on which type of flows
starts first.

The model introduced in [101, 99] is critical in deepening our understanding of such complex behavior, and
providing design guidelines to manage it in practice.
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2.1.5 Forward Engineering: FAST

The congestion control algorithm in the current TCP, which we refer to as Reno, was developed in 1988 [30] and
has gone through several enhancements since. It has performed remarkably well and is generally believed to have
prevented severe congestion as the Internet scaled up by six orders of magnitude in size, speed, load, and connectiv-
ity. It is also well-known, however, that as bandwidth-delay product continues to grow, TCP Reno will eventually
become a performance bottleneck itself. Even though, historically, TCP Reno was designed, implemented, and
deployed without any consideration of network utility maximization, and its equilibrium, fairness, and dynamic
properties were understood only as an afterthought, it indeed solves a NUM implicitly.

Several new algorithms have been proposed in the last few years to address the problems of Reno, including
TCP Westwood, HSTCP [28], FAST TCP [40], STCP [49],BIC TCP [113], HTCP [60], MaxNet [111, 112],
XCP [44], and RCP [22], etc. (see [40] for other references). Some of these designs were explicitly guided by
the emerging theory surveyed in this paper, which has become indispensable to the systematic design of new
congestion control algorithms. It provides a framework to understand issues, clarify ideas and suggest directions,
leading to more understandable and better performing implementations. One of the proposals, FAST, has been
used to break world records of wide area network data transfer in 2003, 2004 and 2005 [40, 109, 41].

The congestion control mechanism of FAST TCP is separated into four components as shown in Figure 3.
These four components are functionally independent so that they can be designed separately and upgraded asyn-
chronously. The data control component determines which packets to transmit, window control determines how

Burstiness
  Control

  Window 
  Control

TCP Protocol Processing

 Data 
Control

Estimation

Figure 3: FAST TCP architecture.

many packets to transmit, and burstiness control determines when to transmit these packets. These decisions are
made based on information provided by the estimation component. More specifically, the estimation component
computes two pieces of feedback information for each data packet sent – a multibit queueing delay and an one-bit
loss-or-no-loss indication – which are used by the other three components. Data control selects the next packet
to send from three pools of candidates: new packets, packets that are deemed lost (negatively acknowledged),
and transmitted packets that are not yet acknowledged. Window control regulates packet transmission at the RTT
timescale, while burstiness control smoothes out the transmission of packets at a smaller timescale. The theory
surveyed in this paper forms the foundation of the window control algorithm. FAST periodically updates the con-
gestion window based on the average RTT and average queueing delay provided by the estimation component,
according to (14) in Section 2.1.1.

The equilibrium values of windows w∗ and delays λ∗ of the network defined by (14)–(15) are the unique
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solutions to the utility maximization problem

max
x≥0

∑
s

αs log xs

subject to Rx ≤ c

and its Lagrangian dual problem:

min
λ≥0

∑

l

clλl −
∑

s

αs log
∑

l

Rlsλl

This implies that the equilibrium rate x∗ is αs-weighted proportionally fair. In equilibrium, source s maintains αs

packets in the buffers along its path. Hence, the total amount of buffering in the network must be at least
∑

s αs

packets in order to reach the equilibrium. FAST TCP is proved in [107] to be locally asymptotically stable for
general networks if all flows have the same feedback delay, no matter how large the delay is. It is proved in [17] to
be globally asymptotically stable in the presence of heterogeneous feedback delay at a single link.

We have implemented the insights from this series of theoretical work in a software prototype FAST TCP
[40, 109] and have been working with our collaborators to test it in various networks around the world [41].
Physicists have been using FAST TCP to break various world records in data transfer in the last few years. Figure
4 shows its performance in several experiments conducted over 2002–05 over a high speed trans-Atlantic network,
over a home DSL (digital subscriber line), and over an emulated lossy link.

2.2 Medium Access Control

2.2.1 Reverse engineering: MAC as non-cooperative game

If contentions among transmissions on the same link in wired networks or across different links in wireless net-
works are not appropriately controlled, a large number of collisions may occur, resulting in waste of resources such
as bandwidth and energy, as well as loss of system efficiency and fairness. There are two major types of medium
access control (MAC): scheduling-based contention-free mode and random-access-based contention-prone mode.
The first is often shown to solve certain maximum weight matching problems. The second has been extensively
studied through the perspective of queuing-theoretic performance evaluation, but is only recently reverse engi-
neered to recover the underlying utility maximization structure [55, 97].

In TCP reverse engineering considered in the last subsection, the utility function of each source depends only
on its data rate that can be directly controlled by the source itself. TCP/AQM can be modeled as a distributed
algorithm that solves the basic NUM problem and its Lagrange dual.

In contrast, in the Exponential-Backoff (EB) MAC protocol, the utility of each link directly depends not only
on its own transmission (e.g., persistence probability) but also transmissions of other links due to collisions. We
show that the EB protocol can be reverse engineered through a non-cooperative game in which each link tries
to maximize, using a stochastic subgradient formed by local information, its own utility function in the form of
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Figure 4: Performance of FAST TCP. (a) At 1 Gpbs, FAST TCP utilized 95% of a trans-Atlantic network bandwidth
while maintaining a fairly constant throughput. Linux TCP on average used 19% of the available bandwidth, while
producing a throughput that fluctuates from 100 Mbps to 400 Mbps. (b) At an 512-Kbps DSL uplink, data transfer
using FAST TCP increased the latency from 10 ms to around 50 ms, while Linux and Windows TCP increased it
to as high as 600 ms, an order of magnitude larger. (c) Over an emulated lossy link, FAST TCP achieved close
to optimal data rate while other (loss-based) TCP variants collapsed when loss rate exceeded 5%. Figure from
unpublished work by Bartek Wydrowski, Sanjay Hegde and Cheng Jin.29
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Figure 5: Logical topology graph of a network illustrating contention.

expected net reward for successful transmission. While the existence of Nash equilibrium can be proved, neither
convergence nor social welfare optimality is guaranteed. We then provide sufficient conditions on user density
and backoff aggressiveness that guarantee uniqueness and stability of Nash equilibrium (i.e., convergence of the
standard best response strategy).

Consider an ad hoc network represented by a directed graph G(V,E), e.g., as in Figure 5, where V is the set of
nodes and E is the set of logical links. We define Lout(n) as a set of outgoing links from node n, Lin(n) as a set
of incoming links to node n, tl as the transmitter node of link l, and rl as the receiver node of link l. We also define
N I

to(l) as the set of nodes whose transmission cause interference to the receiver of link l, excluding the transmitter
node of link l, (i.e., tl), and LI

from(n) as the set of links whose transmission get interfered from the transmission
of node n, excluding outgoing links from node n (i.e., l ∈ Lout(n)). Hence, if the transmitter of link l and a node
in set N I

to(l) transmit data simultaneously, the transmission of link l fails. If node n and the transmitter of link l in
set LI

from(n) transmit data simultaneously, the transmission of link l also fails.

Random-access protocols in such wireless networks usually consist of two phases: contention avoidance and
contention resolution. We focus only on the second phase. The EB protocol is a prototypical contention resolution
protocol. For example, in the IEEE 802.11 DCF (Distributed Coordination Function) implementation, the EB
protocol is window-based: each link l maintains its contention window size Wl, current window size CWl, and
minimum and maximum window sizes Wmin

l and Wmax
l . After each transmission, contention window size and

current window size are updated. If transmission is successful, the contention window size is reduced to the
minimum window size (i.e., Wl = Wmin

l ), otherwise it is doubled until reaching the maximum window size
Wmax

l (i.e., Wl = min{2Wl,W
max
l }). Then, current window size CWl is chosen to be a number between (0,Wl)

uniformly at random. It decreases in every time-slot, and when it becomes zero, the link transmits data. Since the
window size is doubled after each transmission failure, the random access protocol in DCF is called the Binary
Exponential Backoff (BEB) protocol, which is a special case of EB protocols.

We study the window-based EB MAC protocol through a persistence probabilistic model, an approach anal-
ogous to the source rate model for the window-based TCP congestion control protocol in Subsection 2.1.2. Here
each link l transmits data with a probability pl, which we refer to as the persistence probability of link l. After each
transmission attempt, if the transmission is successful without collisions, then link l sets its persistence probability
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to be its maximum value, pmax
l . Otherwise, it multiplicatively reduces its persistence probability by a factor βl

(0 < βl < 1) until reaching its minimum value pmin
l . This persistence probability model is a memoryless one that

approximates the average behavior of EB protocol.

Since in the window-based BEB protocol the current window size CWl of link l is randomly selected between
(0,Wl), when its window size is Wl, we may think that link l transmits data in a time-slot with an attempt proba-
bility 1/Wl, which corresponds to the persistence probability pl in our model for the average behavior of the EB
protocols. In the window-based protocol, after every transmission success, the attempt probability is set to be its
maximum value (i.e., 1/Wmin

l ), which corresponds to pmax
l in our model, and after every transmission failure, the

attempt probability is set to be a fraction of its current value until it reaches its minimum value, which corresponds
to reducing the persistence probability by a factor of β = 0.5 in BEB (and in general β ∈ (0, 1) in EB) until
reaching the minimum persistence probability pmin

l .

The update algorithm for the persistence probability described above can be written as:

pl(t + 1) = max{pmin
l , pmax

l 1{Tl(t)=1}1{Cl(t)=0} + βlpl(t)1{Tl(t)=1}1{Cl(t)=1} + pl(t)1{Tl(t)=0}} (39)

where pl(t) is a persistence probability of link l at time-slot t, 1a is an indicator function of event a, and Tl(t) and
Cl(t) are the events that link l transmits data at time-slot t and that there is a collision to link l’s transmission given
that link l transmits data at time-slot t, respectively. In the rest of this subsection, we will examine the case when
pmin

l = 0. Given p(t), we have
Prob{Tl(t) = 1|p(t)} = pl(t)

and
Prob{Cl(t) = 1|p(t)} = 1−

∏

n∈LI
to(l)

(1− pn(t)).

Since the update of the persistence probabilities for the next time-slot depends only on the current persistence
probabilities, we will consider the update conditioning on the current persistence probabilities. Note that pl(t) is
a random process whose transitions depend on events Tl(t) and Cl(t). We first study its expected trajectory and
will return to (39) later in this subsection. Slightly abusing the notation, we still use pl(t) to denote the expected
persistence probability. From (39), we have

pl(t + 1) = pmax
l E{1{Tl(t)=1}1{Cl(t)=0}|p(t)}+ βlE{pl(t)1{Tl(t)=1}1{Cl(t)=1}|p(t)}+ E{pl(t)1{Tl(t)=0}|p(t)}

= pmax
l pl(t)

∏

n∈LI
to(l)

(1− pn(t)) + βlpl(t)pl(t)


1−

∏

n∈LI
to(l)

(1− pn(t))


 + pl(t)(1− pl(t)), (40)

where E{a|b} is the expected value of a given b and 1 denotes the indicator function of probabilistic events.

We now reverse engineer the update algorithm in (40) as a game, in which each link l updates its strategy,
i.e., its persistence probability pl, to maximize its utility Ul based on strategies of the other links, i.e., p−l =
(p1, · · · , pl−1, pl+1, · · · , p|E|). Formally, the game is GEB−MAC = [E,×l∈EAl, {Ul}l∈E ], where E is a set of
players, i.e., links, Al = {pl | 0 ≤ pl ≤ pmax

l } is an action set of player l, and Ul is a utility function of player l to
be determined through reverse engineering.
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Theorem 4. The utility function is the following expected net reward (expected reward minus expected cost) that
the link can obtain from its transmission:

Ul(p) = R(pl)S(p)− C(pl)F (p), ∀l (41)

where S(p) = pl
∏

n∈LI
to(l)(1− pn) is the probability of transmission success, F (p) = pl(1−

∏
n∈LI

to(l)(1− pn))

is the probability of transmission failure, and R(pl)
def= pl(1

2pmax
l − 1

3pl) can be interpreted as the reward for

transmission success, C(pl)
def= 1

3(1− βl)p2
l can be interpreted as the cost for transmission failure.

Furthermore, there exists a Nash equilibrium in the EB-MAC Game GEB−MAC = [E,×l∈EAl, {Ul}l∈E ]
characterized by the following:

p∗l =
pmax

l

∏
n∈LI

to(l)(1− p∗n)

1− βl(1−
∏

n∈LI
to(l)(1− p∗n))

, ∀l. (42)

Note that the expressions of S(p) and F (p) come directly from the definitions of success and failure probabil-
ities, while the expressions of R(pl) and C(pl) (thus exact form of Ul) are in fact derived in the proof by reverse
engineering the EB protocol description.

In the EB protocol, there is no explicit message passing among links, and the link cannot obtain the exact
information to evaluate the gradient of its utility function. Instead of using the exact gradient of its utility function
as in (40), each link attempts to approximate it using (39). It can be shown [56, 97] that the EB protocol described
by (39) is a stochastic subgradient algorithm to maximize utility (41).

Method 7. Reverse engineer a non-cooperative protocol as a game.

The next step is to investigate uniqueness of Nash equilibrium together with the convergence of a natural
strategy for the game: the best response strategy, commonly used to study stability of Nash equilibrium. In best
response, each link updates its persistence probability for the next time-slot such that it maximizes its utility based
on the persistence probabilities of the other links in the current time-slot:

p∗l (t + 1) = argmax
0≤pl≤pmax

l

Ul(pl,p∗−l(t)). (43)

Hence, p∗l (t + 1) is the best response of link l given p∗−l(t). The connection between the best response strategy
and stochastic subgradient update strategy has been quantified for EB MAC Game [97].

Let K = maxl{|LI
to(l)|}, which captures the amount of potential contention among links. We have the

following theorem that relates three key quantities: amount of potential contention K, backoff multiplier β (speed
of backoff), and pmax that corresponds to the minimum contention window size (minimum amount of backoff).

Theorem 5. If pmaxK
4β(1−pmax) < 1, then

1. The Nash equilibrium is unique;
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Figure 6: A contention graph.

2. Starting from any initial point, the iteration defined by best response converges to the unique equilibrium.

There are several interesting engineering implications from the above theorem. For example, it provides guid-
ance on choosing parameter in the EB protocols, and quantifies the intuition that with a large enough β (i.e., links
do not decrease the probabilities suddenly) and a small enough pmax (i.e., links backoff aggressively enough),
uniqueness and stability can be ensured. The higher the amount of contention (i.e., a larger value of K), the
smaller pmax needs to be. The key idea in the proof is to show the updating rule from p(t) to p(t + 1) is a con-
traction mapping by verifying the infinity norm of the Jacobian J of the update dynamics in the game is less than
one.

Method 8. Verifying contraction mapping by bounding the Jacobian’s norm.

As will be discussed in Section 4, session level stochastic effects need to be incorporated in the above reverse
engineering model to include the arrival statistics of finite-duration sessions. Then MAC protocols can be analyzed
and designed through a union of stochastic stability results in traditional queuing models and optimality results in
the utility maximization models.

2.2.2 Forward engineering: Utility-optimal MAC protocol

Nash equilibrium attained by existing EB MAC protocols may not be socially optimal. This motivates forward
engineering where adequate feedback is generated to align selfish utility maximization by each logical link to
maximize the social welfare in terms of total network utility. By imposing different utility functions, different
types of services and different efficiency-fairness tradeoffs can be provisioned. Two suites of protocols are pos-
sible: scheduling-based and random-access-based. We again focus on the second in this subsection on forward
engineering.

Contentions among links can be modeled by using a contention graph first proposed in [72]. An example is
shown in Figure 6, which is obtained from Figure 5 assuming that if the distance between the receiver of one link
and the transmitter of the other link is less than 2d, there is interference between those two links. Each vertex in
the contention graph corresponds to a link in the network topology graph. If two links’ transmissions interfere with
each other, the vertices corresponding to them in the contention graph are connected with an edge. Only one link
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Figure 7: A bipartite graph between maximal cliques and links in the contention graph.

at a time among links in the same maximal clique in the contention graph can transmit data without collision. This
constraint can be visualized by using a bipartite graph, as in Figure 7, where one partition of vertices corresponds
to links in the network (i.e., nodes in the contention graph) and the other corresponds to maximal cliques in the
contention graph. An edge is established in the bipartite graph if a node in the contention graph belongs to a
maximal clique. Hence, only network links represented by the nodes in the bipartite graph that are covered by a
matching can transmit data simultaneously without collisions.

In [72, 26, 10], a fluid approximation approach is used where each maximum clique is defined as a resource
with a finite capacity that is shared by the links belonging to the clique. Capacity of a clique is defined as the
maximum value of the sum of time fractions such that each link in the clique can transmit data without collision.
Consequently, a generalized NUM problem has been formulated as follows, with capacity constraint CCLi at each
maximal clique CLi:

maximize
∑

l Ul(xl)
subject to

∑
l∈L(CLi)

xl
cl
≤ CCLi ∀i. (44)

This problem formulation essentially takes the same structure as the basic NUM (3) for TCP congestion control,
and can be solved following the same dual-decomposition algorithm.

An alternative approach is to explicitly model collision probabilities, as shown in [42] for log utility and in
[56] for general concave utility. Consider a random-access-based MAC protocol in which each node n adjusts
its own persistence probability and also the persistence probability of each of its outgoing links. Since persistent
transmission decisions are made distributively at each node, we need a shift from graph models based on logical
communication links to graph models that incorporate nodes as well. Let Pn be the transmission probability of
node n, and pl be that of link l. The appropriate generalized NUM thus formulated is as follows, with variables
{Pn}, {pl}:

maximize
∑

l Ul(xl)
subject to xl = clpl

∏
k∈NI

to(l)(1− P k), ∀l∑
l∈Lout(n) pl = Pn, ∀n

0 ≤ Pn ≤ 1, ∀n
0 ≤ pl ≤ 1, ∀l.

(45)

Without loss of generality, we can replace the equality in the first constraint with an inequality. This is because
such an inequality will always be achieved with an equality at optimality. The next step of problem transformation
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is to take the log of both sides of the first constraint in problem (45) and a log change of variables and constants:
x′l = log xl, U ′

l (x
′
l) = Ul(ex′l), and c′l = log cl. This reformulation turns the problem into:

maximize
∑

l∈L U ′
l (x

′
l)

subject to c′l + log pl +
∑

k∈NI
to(l) log (1− P k)− x′l ≥ 0, ∀l∑

l∈Lout(n) pl = Pn, ∀n
0 ≤ Pn ≤ 1, ∀n
0 ≤ pl ≤ 1, ∀l.

(46)

Note that problem (46) is now separable but still may not be a convex optimization problem, since the objective
U ′

l (x
′
l) may not be a strictly concave function, even though Ul(xl) is a strictly concave function. However, the

simple sufficient condition guarantees its concavity:

∂2Ul(xl)
∂x2

l

< −∂Ul(xl)
xl∂xl

,

which states that the curvature (degree of concavity) of the utility function needs to be not just non-positive but
bounded away from 0 by as much as −∂Ul(xl)

xl∂xl
, i.e., the application represented by this utility function must be

elastic enough.

Method 9. Log change of variables for decoupling, and computing minimum curvature needed for concavity after
change of variable.

Following dual decomposition and subgradient method, the NUM problem (45) for random access MAC pro-
tocol design can be solved by the following algorithm.

Algorithm 1. Utility Optimal Random Access Algorithm

Each node n constructs its local interference graph to obtain sets Lout(n), Lin(n), LI
from(n), and N I

to(l),
∀l ∈ Lout(n).

Each node n sets t = 0, λl(1) = 1, ∀l ∈ Lout(n), Pn(1) = |Lout(n)|
|Lout(n)|+|LI

from(n)| , and pl(1) = 1
|Lout(n)|+|LI

from(n)| ,

∀l ∈ Lout(n).

For each node n, do

1: Set t ← t + 1.

2: Inform λl(t) to all nodes in N I
to(l), ∀l ∈ Lout(n) and Pn(t) to tl, ∀l ∈ LI

from(n).

3: Set kn(t) =
∑

l∈Lout(n) λl(t) +
∑

k∈LI
from(n) λk(t) and β(t) = 1

t .

35



4: Solve the following problems to obtain Pn(t + 1), and x′l(t + 1), pl(t + 1), and λl(t + 1), ∀l ∈ Lout(n):

Pn(t + 1) =





P
l∈Lout(n) λl(t)P

l∈Lout(n) λl(t)+
P

k∈LI
from

(n)
λk(t) , if kn(t) 6= 0

|Lout(n)|
|Lout(n)|+|LI

from(n)| , if kn(t) = 0
,

pl(t + 1) =





λl(t)P
l∈Lout(n) λl(t)+

P
k∈LI

from
(n)

λk(t) , if kn(t) 6= 0

1
|Lout(n)|+|LI

from(n)| , if kn(t) = 0
,

x′l(t + 1) = argmax
x
′min
l ≤x′≤x

′max
l

{
U ′

l (x
′
l)− λl(t)x′l

}
,

and

λl(t + 1) =


λl(t)− β(t)


c′l + log pl(t) +

∑

k∈NI
to(l)

log (1− P k(t))− x′l(t)





 .

5: Set its persistence probability Pn∗ = Pn(t) and the conditional persistence probability of each of its outgoing
links q∗l = pl(t)/Pn(t).

6: Decide if it will transmit data with a probability Pn∗, in which case it chooses to transmit on one of its outgoing
links with a probability q∗l , ∀l ∈ Lout(n).

while (1)

Note that the above algorithm is conducted at each node n to calculate Pn, and pl, λl, and x′l for its outgoing
link l (i.e., ∀l ∈ Lout(n)). Hence, the above algorithm is conducted at the transmitter node of each link. If we
assume that two nodes within interference range can communicate with each other (i.e., if nodes within distance
2d in Figure 5 can establish a communication link), in the above algorithm each node requires information from
nodes within two-hop distance from it. To calculate Pn and pl for its outgoing link l (i.e., ∀l ∈ Lout(n)), node n
needs λm from the transmitter node tm of link m that is interfered from the transmission of node n (i.e., from tm,
∀m ∈ LI

from(n)). Note that tm is within two-hop from node n.

Alternatively, if λl and x′l for each link l are calculated at its receiver node rl instead of its transmitter node tl,
a modified version of Algorithm 1 can be devised in which each node requires information only within one-hop
distance [56].

Theorem 6. Algorithm 1 converges to a globally optimal solution of (45) for sufficiently concave utility functions.

We now show a numerical example of the desired tradeoff between efficiency and fairness that can be achieved
by appropriately adjusting the parameters of utility functions. In this experiment, the utility function for each link
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Figure 8: Comparison of network utilities.

l, Ul(xl) is in the following standard form of concave utility parameterized by α, shifted such that Ul(xmin
l ) = 0

and Ul(xmax
l ) = 1:

Ul(xl) =
x

(1−α)
l − x

min(1−α)
l

x
max(1−α)
l − x

min(1−α)
l

.

We set xmin
l = 0.5 and xmax

l = 5, ∀l, varying the value of α from 1 to 2 with a step size 0.1.

We compare the performances of Algorithm 1 and its one-hop message passing variant (modified Algorithm 1,
not shown here) with deterministic fluid approximation and the BEB protocol in IEEE 802.11 standard. 4

In Figure 8, we compare the network utility achieved by each protocol. We show the tradeoff curve of rate
and fairness for each protocol in Figure 9. Here, the fairness index is obtained by f(x) = (

P
l xl)

2

|L|Pl x2
l
. For each

protocol shown in the graph, the area to the left and below of the tradeoff curve is the achievable region (i.e.,
every (rate, fairness) point in this region can be obtained), and the area to the right and above of the tradeoff
curve is the infeasible region (i.e., it is impossible to have any combination of (rate, fairness) represented by points
in this region). It is impossible to operate in the infeasible region and inferior to operate in the interior of the
achievable region. Operating on the boundary of the achievable region, i.e., the Pareto optimal tradeoff curve, is
the best. Points on the Pareto optimal tradeoff curve are not comparable, which point is better depends on the
desired tradeoff between efficiency and fairness. Since the BEB protocol is a static protocol, it always provides the
same efficiency (rate) and fairness regardless of the choice of utility functions. Hence, we cannot flexibly control
the efficiency-fairness tradeoff in the BEB protocol. Algorithm 1 and its variant achieve higher network utility and
wider dynamic range of rate-fairness tradeoff.

4The performance of the BEB protocol highly depends on the choice of maximum and minimum window sizes, W max
l and W min

l . It
turns out that for the network in Figure 5, the average-performance parameters are: W max

l = 20 and W min
l = 10.
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3 Vertical Decomposition

In this section, we turn to vertical decomposition across the protocol stack. Intuitively, allocating limited resources
among competing users can be conducted through a variety of combinations. For example, to mitigate congestion
at a bottleneck link, source rates can be reduced through congestion control, link capacity can be increased through
power control, or alternative routes can be chosen. Four case studies from our recent publications [106, 35, 13, 55,
57, 11] are summarized in Section 3.1, with more details on the first two cases, which illustrate the applications
to the analysis and design aspects, respectively. We will formulate generalized NUM problems to capture the
interactions across such functional modules. It can be decomposed into subproblems each of which solved by a
layer, and the interface between the layers represented by some function of the optimization variables. Then in
Section 3.2, we will show that these case studies have only used a subset of alternative layering architectures.

3.1 Case Studies

3.1.1 Case 1: Jointly optimal congestion control and routing

Suppose that there are Ks acyclic paths from source s to its destination, represented by a L ×Ks 0–1 matrix Hs

where

Hs
lj =

{
1, if path j of source s uses link l
0, otherwise.

Let Hs be the set of all columns of Hs that represents all the available paths to s. Define the L×K matrix H as

H = [H1 . . . HN ]
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where K :=
∑

s Ks. H defines the physical topology of the network.

Let ws be a Ks × 1 vector where the jth entry represents the fraction of i’s flow on its jth path such that

ws
j ≥ 0 ∀j and 1Tws = 1

where 1 is a vector of an appropriate dimension with the value 1 in every entry. We require ws
j ∈ {0, 1} for single

path routing, and allow ws
j ∈ [0, 1] for multipath routing. Collect the vectors ws, s = 1, . . . , N , into a K × N

block-diagonal matrix W. Let Wn be the set of all such matrices corresponding to single path routing defined as

{W|W = diag(w1, . . . ,wN ) ∈ {0, 1}K×N , 1Tws = 1, ∀s.}

Define the corresponding set Wm for multipath routing as

{W|W = diag(w1, . . . ,wN ) ∈ [0, 1]K×N , 1Tws = 1, ∀s.} (47)

As mentioned above, H defines the set of acyclic paths available to each source, and W defines how the
sources load balance across these paths. Their product defines a L × N routing matrix R = HW that specifies
the fraction of s’s flow at each link l. The set of all single-path routing matrices is

Rn = {R |R = HW,W ∈ Wn } (48)

and the set of all multipath routing matrices is

Rm = {R |R = HW,W ∈ Wm }. (49)

The difference between single-path routing and multipath routing is the integer constraint on W and R. A single-
path routing matrix in Rn is an 0-1 matrix:

Rls =
{

1 if link l is in the path of source s
0 otherwise

A multipath routing matrix in Rm is one whose entries are in the range [0, 1]:

Rls

{
> 0, if link l is in a path of source s
= 0, otherwise.

The path of source s is denoted by rs = [R1s . . . RLs]T , the sth column of the routing matrix R. We now model
the interaction of congestion control at the transport layer and shortest-path routing at the network layer.

We first consider the situation where TCP–AQM operates at a faster timescale than routing updates. We assume
a single path is selected for each source-destination pair that minimizes the sum of the link costs in the path, for
some appropriate definition of link cost. In particular, traffic is not split across multiple paths from the source to
the destination even if they are available. This models, e.g., IP routing within an Autonomous System. We focus
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on the timescale of the route changes, and assume TCP–AQM is stable and converges instantly to equilibrium after
a route change. As explained in the last section, we interpret the equilibria of various TCP and AQM algorithms
as solutions of NUM and its dual.

Specifically, let R(t) ∈ Rn be the (single-path) routing in period t. Let the equilibrium rates x(t) = x(R(t))
and prices λ(t) = λ(R(t)) generated by TCP–AQM in period t, respectively, be the optimal primal and dual
solutions, i.e.,

x(t) = arg max
x≥0

∑
s

Us(xs) s. t. R(t)x ≤ c (50)

λ(t) = arg min
λ≥0

∑
s

max
xs≥0

(
Us(xs)− xs

∑

l

Rls(t)λl

)
+

∑

l

clλl (51)

The link costs used in routing decision in period t are the congestion prices λl(t). Each source computes its new
route rs(t + 1) ∈ Hs individually that minimizes the total cost on its path:

rs(t + 1) = arg min
rs∈Hs

∑

l

λl(t)rs
l (52)

We say that (R∗,x∗, λ∗) is an equilibrium of TCP/IP if it is a fixed point of (50)–(52), i.e., starting from routing
R∗ and associated (x∗, λ∗), the above iterations yield (R∗,x∗,λ∗) in the subsequent periods.

We now characterize the condition under which TCP/IP as modeled by (50)–(52) has an equilibrium. Consider
the following generalized NUM:

max
R∈Rn

max
x≥0

∑
s

Us(xs) s. t. Rx ≤ c, (53)

and its Lagrange dual problem:

min
λ≥0

∑
s

max
xs≥0

(
Us(xs)− xs min

rs∈Hs

∑

l

Rlsλl

)
+

∑

l

clλl, (54)

where rs is the sth column of R with rs
l = Rls. While (50) maximizes utility over source rates only, problem (53)

maximizes utility over both rates and routes. While (50) is a convex optimization problem without duality gap,
problem (53) is nonconvex because the variable R is discrete, and generally has a duality gap.5 The interesting
feature of the dual problem (54) is that the maximization over R takes the form of minimum-cost routing with
congestion prices λ generated by TCP–AQM as link costs. This suggests that TCP/IP might turn out to be a
distributed algorithm that attempts to maximize utility, with a proper choice of link costs. This is indeed true –
when an equilibrium of TCP/IP exists.

5The nonlinear constraint Rx ≤ c can be converted into a linear constraint (see proof of Theorem 8 in [106]), so the integer constraint
on R is the real source of difficulty.
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Theorem 7. An equilibrium (R∗,x∗, λ∗) of TCP/IP exists if and only if there is no duality gap between (53) and
(54). In this case, the equilibrium (R∗,x∗, λ∗) is a solution of (53) and (54).

Method 10. Analyzing a given cross-layer interaction through generalized NUM.

Hence, one can regard the layering of TCP and IP as a decomposition of the utility maximization problem over
source rates and routes into a distributed and decentralized algorithm, carried out on two different timescales, in
the sense that an equilibrium of the TCP/IP iteration (50)–(52), if it exists, solves (53) and (54). An equilibrium
may not exist. Even if it does, it may not be stable [106].

The duality gap can be interpreted as a measure of “cost for not splitting”. To elaborate, consider the La-
grangian

L(R,x, λ) =
∑

s

(
Us(xs)− xs

∑

l

Rlsλl

)
+

∑

l

clλl.

The primal (53) and dual (54) can then be expressed respectively as:

Vnp = max
R∈Rn,x≥0

min
λ≥0

L(R,x, λ),

Vnd = min
λ≥0

max
R∈Rn,x≥0

L(R,x, λ).

If we allow sources to distribute their traffic among multiple paths available to them, then the corresponding
problems for multi-path routing are

Vmp = max
R∈Rm,x≥0

min
λ≥0

L(R,x, λ),

Vmd = min
λ≥0

max
R∈Rm,x≥0

L(R,x, λ).. (55)

Since Rn ⊆ Rm, Vnp ≤ Vmp. The next result clarifies the relation among these four problems.

Theorem 8. Vsp ≤ Vsd = Vmp = Vmd.

According to Theorem 7, TCP/IP has an equilibrium exactly when there is no duality gap in the single-path
utility maximization, i.e., when Vnp = Vnd. Theorem 8 then says that in this case, there is no penalty in not
splitting the traffic, i.e., single-path routing performs as well as multipath routing, Vnp = Vmp. Multipath routing
achieves a strictly higher utility Vmp precisely when TCP/IP has no equilibrium, in which case the TCP/IP iteration
(50)–(52) cannot converge, let alone solving the single-path utility maximization problem (53) or (54). In this case
the problem (53) and its dual (54) do not characterize TCP/IP, but their gap measures the loss in utility in restricting
routing to single-path and is of independent interest.

Even though shortest-path routing is polynomial, the single-path utility maximization is NP-hard.

Theorem 9. The primal problem (53) is NP-hard.
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Theorem 9 is proved [106] by reducing all instances of the integer partition problem to some instances of the
primal problem (53). Theorem 8 however implies that the sub-class of the utility maximization problems with
no duality gap are in P, since they are equivalent to multipath problems which are convex programs and hence
polynomial-time solvable. It is a common phenomenon for sub-classes of NP-hard problems to have polynomial-
time algorithms (e.g., satisfiability is NP-hard, and yet 2-SAT is in P). Informally, the hard problems are those with
nonzero duality gap.

Theorem 7 suggests using pure prices λ(t) generated by TCP–AQM as link costs because in this case, an
equilibrium of TCP/IP, when it exists, maximizes aggregate utility over both rates and routes. It is shown in
[106] however that such an equilibrium can be unstable, and hence not attainable by TCP/IP. Routing can be
stabilized by including a strictly positive traffic-insensitive component in the link cost, in addition to congestion
price. Stabilization however reduces the achievable utility. There thus seems to be an inevitable tradeoff between
achievable utility and routing stability, when link costs are fixed. If the link capacities are optimally provisioned,
however, pure static routing, which is necessarily stable, is enough to maximize utility. Moreover, it is optimal
even within the class of multipath routing: again, there is no penalty in not splitting traffic across multiple paths.

In [35], three alternative timescale separations are further considered for the joint congestion control and
shortest-path routing dynamics based on congestion price. Analytic characterizations and simulation experiments
demonstrate how the step size of the congestion-control algorithm affects the stability of the system models, and
how the timescale of each control loop and homogeneity of link capacities affect system stability and optimality.
In particular, the stringent conditions on capacity configuration for TCP/IP interaction to remain stable suggest that
congestion price, on its own, would be a poor “layering price” for TCP and (dynamic routing based) IP in practice.
Alternative traffic engineering methods should be considered instead [36].

3.1.2 Case 2: Jointly optimal congestion control and physical layer resource allocation

The physical layer provides the transmission pipes for end-to-end transport. Adaptive resource allocation in phys-
ical layer, such as power control and error correction coding considered in this subsection, produces intriguing
interactions with transport layer.

First consider a wireless multihop network with an established logical topology represented by R or equiva-
lently {S(l)}, where some nodes are sources of transmission and some nodes act as relay nodes. Revisiting the
basic NUM (3), for which TCP congestion control solves, we observe that in an interference-limited wireless net-
work, data rates attainable on wireless links are not fixed numbers c as in (3), and instead can be written as global
and nonlinear functions of the transmit power vector P and channel conditions:

cl(P) =
1
T

log(1 + KSIRl(P)), ∀l.

Here constant T is the symbol period, which will be assumed to be one unit without loss of generality, and constant
K = −φ1

log(φ2BER)
where φ1, φ2 are constants depending on the modulation and BER is the required bit error rate.

The signal to interference ratio for link l is defined as SIRl(P) = PlGllP
k 6=l PkGlk+nl

for a given set of path losses Glk
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(from the transmitter on logical link k to the receiver on logical link l) and a given set of noises nl (for the receiver
on logical link l). The Glk factors incorporate propagation loss, spreading gain, and other normalization constants.
Notice that Gll is the path gain on link l (from the transmitter on logical link l to the intended receiver on the same
logical link). With reasonable spreading gain, Gll is much larger than Glk, k 6= l, and assuming that not too many
close-by nodes transmit at the same time, KSIR is much larger than 1. In this case, cl can be approximated as
log(KSIRl(P)).

With the above assumptions, we have specified the following generalized NUM with “elastic” link capacities:

maximize
∑

s Us(xs)
subject to

∑
s∈S(l) xs ≤ cl(P), ∀l

x,P ≥ 0
(56)

where the optimization variables are both source rates x and transmit powers P. The key difference from the
standard utility maximization (3) is that each link capacity cl is now a function of the new optimization variables:
the transmit powers P. The design space is enlarged from x to both x and P, which are clearly coupled in (56).
Linear flow constraints on x become nonlinear constraints on (x,P). In practice, problem (56) is also constrained
by the maximum and minimum transmit powers allowed at each transmitter on link l: Pl,min ≤ Pl ≤ Pl,max, ∀l.

The major challenges are the two global dependencies in (56):

• Source rates x and link capacities c are globally coupled across the network, as reflected in the range of
summation {s ∈ S(l)} in the constraints in (56).

• Each link capacity cl(P), in terms of the attainable data rate under a given power vector, is a global function
of all the interfering powers.

We present the following distributive algorithm and later prove that it converges to the global optimum of (56).
To make the algorithm and its analysis concrete, we focus on delay-based price and TCP Vegas window update (as
reflected in items 1 and 2 in the algorithm, respectively) and the corresponding logarithmic utility maximization
over (x,P), where αs is a constant parameter in TCP Vegas:

maximize
∑

s αs log xs

subject to
∑

s∈S(l) xs ≤ cl(P), ∀l
x,P ≥ 0.

(57)

Algorithm 2. Joint Congestion-control and Power-control Algorithm

During each time slot t, the following four updates are carried out simultaneously until convergence:
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1. At each intermediate node, a weighted queuing delay λl is implicitly updated, where β1 > 0 is a constant:

λl(t + 1) =


λl(t) +

β1

cl(t)


 ∑

s∈S(l)

xs(t)− cl(t)







+

. (58)

2. At each source, total delay Ds is measured and used to update the TCP window size ws. Consequently, the
source rate xs is updated:

ws(t + 1) =





ws(t) + 1
Ds(t)

if ws(t)
ds

− ws(t)
Ds(t)

< αs

ws(t)− 1
Ds(t)

if ws(t)
ds

− ws(t)
Ds(t)

> αs

ws(t) else.

(59)

xs(t + 1) =
ws(t + 1)

Ds(t)
.

3. Each transmitter j calculates a message mj(t) ∈ R+
6 based on locally measurable quantities, and passes

the message to all other transmitters by a flooding protocol:

mj(t) =
λj(t)SIRj(t)

Pj(t)Gjj
.

4. Each transmitter updates its power based on locally measurable quantities and the received messages, where
β2 > 0 is a constant:

Pl(t + 1) = Pl(t) +
β2λl(t)
Pl(t)

− β2

∑

j 6=l

Gljmj(t). (60)

With the minimum and maximum transmit power constraint (Pl,min, Pl,max) on each transmitter, the updated
power is projected onto the interval [Pl,min, Pl,max].

Item 2 is simply the TCP Vegas window update [8]. Item 1 is a modified version of queuing delay price update
[64] (and the original update [8] is an approximation of item 1). Items 3 and 4 describe a new power control using

message passing. Taking in the current values of λj(t)SIRj(t)
Pj(t)Gjj

as the messages from other transmitters indexed by
j, the transmitter on link l adjusts its power level in the next time slot in two ways: first increases power directly
proportional to the current price (e.g., queuing delay in TCP Vegas) and inversely proportional to the current power
level, then decreases power by a weighted sum of the messages from all other transmitters, where the weights are
the path losses Glj

7. Intuitively, if the local queuing delay is high, transmit power should increase, with a more

6Note that this does not denote price-mapping functions as in Subsection 2.1.4.
7This facilitates a graceful reduction of message passing scope since messages from far-away neighbors are weighted much less.
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moderate increase when the current power level is already high. If queuing delays on other links are high, transmit
power should decrease in order to reduce interference on those links.

To compute mj , the values of queuing delay λj , signal-interference-ratio SIRj , and received power level PjGjj

can be directly measured by node j locally. This algorithm only uses the resulting message mj but not the individ-
ual values of λj , SIRj , Pj and Gjj . Each message is a real number to be explicitly passed. To conduct the power
update, Glj factors are assumed to be estimated through training sequences.

It is important to note that there is no need to change the existing TCP congestion control and queue man-
agement algorithms. All that is needed to achieve the joint and global optimum of (57) is to utilize the values of
weighted queuing delay in designing power control algorithm in the physical layer. The stability and optimality of
this layering price can be stated through the following

Theorem 10. For small enough constants β1 and β2, Algorithm 2 (58,59,60) converges to the global optimum of
the joint congestion control and power control problem (57).

The key steps of vertical decomposition with congestion price as the layering price are again through dual
decomposition. We first associate a Lagrange multiplier λl for each of the constraints

∑
s∈S(l) xs ≤ cl(P). Using

the KKT optimality conditions [3, 7], solving problem (57) (or (56)) is equivalent to satisfying the complementary
slackness condition and finding the stationary points of the Lagrangian.

Complementary slackness condition states that at optimality, the product of the dual variable and the associated
primal constraint must be zero. This condition is satisfied since the equilibrium queuing delay must be zero if the
total equilibrium ingress rate at a router is strictly smaller than the egress link capacity. We also need to find
the stationary points of the Lagrangian: Lsystem(x,P, λ) =

∑
s Us(xs) −

∑
l λl

∑
s∈S(l) xs +

∑
l λlcl(P). By

linearity of the differentiation operator, this can be decomposed into two separate maximization problems:

maximizexº0 Lcongestion(x, λ) =
∑

s Us(xs)−
∑

s

∑
l∈L(s) λlxs,

maximizePº0 Lpower(P, λ) =
∑

l λlcl(P).

The first maximization is already implicitly solved by the congestion control mechanism for different Us (such
as TCP Vegas for Us(xs) = αs log xs). But we still need to solve the second maximization, using the Lagrange
multipliers λ as the shadow prices to allocate exactly the right power to each transmitter, thus increasing the link
data rates and reducing congestion at the network bottlenecks. Although the data rate on each wireless link is a
global function of all the transmit powers, distributed solution is still feasible through distributed gradient method
with the help of message passing. Issues arising in practical implementation, such as asynchronous update and
reduced message passing, and their impacts on convergence and optimality, are discussed in [13].

Method 11. Dual decomposition for jointly optimal cross layer design.

The logical topology and routes for four multi-hop connections are shown in Figure 10 for a numerical example.
Sources at each of the four flows use TCP Vegas window updates. The path losses Gij are determined by the
relative physical distances dij , which we vary in different experiments, by Gij = d−4

ij . The target BER is 10−3 on
each logical link.
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Figure 10: Logical topology and connections for a joint congestion control power control example.

Transmit powers, as regulated by the proposed distributed power control, and source rates, as regulated through
TCP Vegas window update, are shown in Figure 11. The initial conditions of the graphs are based on the equi-
librium states of TCP Vegas with fixed power levels of 2.5mW . With power control, the transmit powers P
distributively adapt to induce a “smart” capacity c and queuing delay λ configuration in the network, which in
turn lead to increases in end-to-end throughput as indicated by the rise in all the allowed source rates. Notice that
some link capacities actually decrease while the capacities on the bottleneck links rise to maximize the total net-
work utility. This is achieved through a distributive adaptation of power, which lowers the power levels that cause
most interference on the links that are becoming a bottleneck in the dynamic demand-supply matching process.
Confirming our intuition, such a “smart” allocation of power tends to reduce the spread of queuing delays, thus
preventing any link from becoming a bottleneck. Queuing delays on the four links do not become the same though,
due to the asymmetry in traffic load on the links and different weights in the logarithmic utility objective functions.
We indeed achieve the primary goal of this co-design across the transport and physical layers. The end-to-end
throughput per watt of power transmitted is 82% higher with power control.

In the second half of this subsection, we discuss the interaction of per-hop adaptive channel coding with end-
to-end congestion control. At the end hosts, the utility for each user depends on both transmission rate and signal
quality, with an intrinsic tradeoff between the two. At the same time, each link may also provide a “fatter” (or
“thinner”) transmission “pipe” by allowing a higher (or lower) decoding error probability.

In the basic NUM, the convexity and separability properties of the optimization problem readily lead to a dis-
tributed algorithm that converges to the globally optimal rate allocation. The generalized NUM problems for joint
rate-reliability provisioning turn out to be non-separable and non-convex. We review a price-based distributed
algorithm and its convergence to the globally optimal rate-reliability tradeoff under readily-verifiable sufficient
conditions on link coding block lengths and user utility curvatures. In contrast to standard price-based rate con-
trol algorithms for the basic NUM, in which each link provides the same congestion price to each of its users
and/or each user provides its willingness to pay for rate allocation to the network, in the joint rate-reliability algo-
rithms each link provides a possibly different congestion price to each of its users and each user also provides its
willingness to pay for its own reliability to the network.

On some communication links, physical layer’s adaptive channel coding (i.e., error correction coding) can
change the information “pipe” sizes and decoding error probabilities, e.g., through adaptive channel coding in
Digital Subscriber Loop (DSL) broadband access networks or adaptive diversity-multiplexing control in Multiple-
Input-Multiple-Output (MIMO) wireless systems. Then each link capacity is a function of the signal quality
(i.e., decoding reliability) attained on that link. A higher throughput can be obtained on a link at the expense of
lower decoding reliability, which in turn lowers the end-to-end signal quality for sources traversing the link and
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Figure 11: A typical numerical example of joint TCP Vegas congestion control and power control. The top left
graph shows the primal variables P. The lower left graph shows the dual variables λ. The lower right graph shows
the primal variables x, i.e., the end-to-end throughput. In order of their y-axis values after convergence, the curves
in the top left, top right, and bottom left graphs are indexed by the third, first, second, and fourth links in Figure
10. The curves in the bottom right graph are indexed by flows 1, 4, 3, 2.

reduces users’ utilities, thus leading to an intrinsic tradeoff between rate and reliability. This tradeoff also provides
an additional degree of freedom for improving each user’s utility as well as system efficiency. For example, if
we allow lower decoding reliability, thus higher information capacity, on the more congested links, and higher
decoding reliability, thus lower information capacity, on the less congested links, we may improve the end-to-end
rate and reliability performance of each user. Clearly, rate-reliability tradeoff is globally coupled across the links
and users.

In the case where the rate-reliability tradeoff is controlled through the code rate of each source on each link,
there are two possible policies: integrated dynamic reliability policy and differentiated dynamic reliability policy.
In integrated policy, a link provides the same error probability (i.e., the same code rate) to each of the sources
traversing it. Since a link provides the same code rate to each of its sources, it must provide the lowest code rate
that satisfies the requirement of the source with the highest reliability. This motivates a more general approach
called differentiated policy to fully exploit the rate-reliability tradeoff when there exist multi-class sources (i.e.,
sources with different reliability requirements) in the network. Under the differentiated dynamic reliability policy,
a link can provide a different error probability (i.e., a different code rate) to each of the sources using this link.

We assume that each source s has a utility function Us(xs, ρs), where xs is an information data rate and ρs is
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reliability of source s. We assume that the utility function is a continuous, increasing, and strictly concave function
of xs and ρs. Each source s has a minimum reliability requirement ρmin

s . The reliability of source s is defined as

ρs = 1− ps,

where ps is the end-to-end error probability of source s. Each link l has its maximum transmission capacity cmax
l .

After link l receives the data of source s from the upstream link, it first decodes it to extract the information data
of the source and encodes it again with its own code rate, rl,s, where the code rate is defined by the ratio of the
information data rate xs at the input of the encoder to the transmission data rate tl,s at the output of the encoder [31].
This allows a link to adjust the transmission rate and the error probability of the sources, since the transmission
rate of source s at link l can be defined as

tl,s =
xs

rl,s
,

and the error probability of source s at link l can be defined as a function of rl,s by

pl,s = El(rl,s),

which is assumed to be an increasing function of rl,s. Rarely there are analytic formula for El(rl,s), and we will
use various upper bounds on this function. The end-to-end error probability for each source s is

ps = 1−Πl∈L(s)(1− pl,s) = 1−Πl∈L(s)(1− El(rl,s)).

Assuming that the error probability of each link is small (i.e., pl,s ¿ 1), we can approximate the end-to-end error
probability of source s as

ps ≈
∑

l∈L(s)

pl,s =
∑

l∈L(s)

El(rl,s).

Hence, the reliability of source s can be expressed as

ρs ≈ 1−
∑

l∈L(s)

El(rl,s).

Since each link l has a maximum transmission capacity Cmax
l , the sum of transmission rates of sources that

are traversing each link cannot exceed Cmax
l :
∑

s∈S(l)

tl,s =
∑

s∈S(l)

xs

rl,s
≤ Cmax

l , ∀l.

For (the more general) differentiated dynamic reliability policy in which a link may provide a different code
rate to each of the sources traversing it, the associated generalized NUM becomes the following problem with
variables x, ρ, r:

maximize
∑

s Us(xs, ρs)
subject to ρs ≤ 1−∑

l∈L(s) El(rl,s), ∀s∑
s∈S(l)

xs
rl,s

≤ Cmax
l , ∀l

ρmin
s ≤ ρs ≤ 1, ∀s

0 ≤ rl,s ≤ 1, ∀l, s ∈ S(l).

(61)
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There are two main difficulties in distributively and globally solving the above problem. The first one is the
convexity of El(rl,s). If random coding based on binary coded signals is used, a standard upper bound on the error
probability is:

pl <
1
2
2−M(R0−rl),

where M is the block length and R0 is the cutoff rate. In this case, El(rl) = 1
22−M(R0−rl) is a convex function

for given M and R0. A more general approach for discrete memoryless channel models is to use the random code
ensemble error exponent [31] that upper bounds the decoding error probability:

pl ≤ exp(−MEr(rl)),

where M is the codeword block length and Er(rl) is the random coding exponent function, which is defined as
[31]

Er(rl) = max
0≤µ≤1

max
Q

[Eo(µ,Q)− µrl],

where

Eo(µ,Q) = − log
J−1∑

j=0

[
K−1∑

k=0

QkP̄
1/(1+µ)
jk

]1+µ

,

K is the size of input alphabet, J is the size of output alphabet, Qk is the probability that input letter k is chosen,
and P̄jk is the probability that output letter j is received given that input letter k is transmitted.

In general, El(rl) = exp(−MEr(rl)) may not be convex, even though it is known [31] that Er(rl) is a convex
function. However, the following lemma provides a sufficient condition for its convexity.

Lemma 1. If the absolute value of the first derivatives of Er(rl) is bounded away from 0 and absolute value of
the second derivative of Er(rl) is upper bounded, then for a large enough codeword block length M , El(rl) is a
convex function.

Method 12. Computing conditions under which a general constraint set is convex.

The second difficulty is the global coupling of constraints
∑

s∈S(l)
xs
rl,s

≤ Cmax
l . This problem is tackled by

first introducing auxiliary variables cl,s, which can be interpreted as the allocated transmission capacity to source
s at link l:

maximize
∑

s Us(xs, ρs)
subject to ρs ≤ 1−∑

l∈L(s) El(rl,s), ∀s
xs
rl,s

≤ cl,s, ∀l, s ∈ S(l)∑
s∈S(l) cl,s ≤ Cmax

l , ∀l
ρmin

s ≤ ρs ≤ 1, ∀s
0 ≤ rl,s ≤ 1, ∀l, s ∈ S(l)
0 ≤ cl,s ≤ Cmax

l , ∀l, s ∈ S(l).

(62)

Note that effectively a new “layer” has been introduced into the problem: scheduling of flows by deciding band-
width sharing on each link {cl,s}.
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Method 13. Introducing a new “layer” to decouple a generalized NUM.

A log change of variable x′s = log xs can be used to decouple the above problem for horizontal decomposition.
Define a modified utility function U ′

s(x
′
s, ρs) = Us(ex′s , ρs), which needs to be concave in order for the trans-

formed problem to remain a convex optimization problem, similar to the curvature condition on utility function in
Subsection 2.2.2.

Define

gs(xs, ρs) =
∂2Us(xs, ρs)

∂x2
s

xs +
∂Us(xs)

∂xs
,

hs(xs, ρs) =

((
∂2Us(xs, ρs)

∂xs∂ρs

)2

− ∂2Us(xs, ρs)
∂x2

s

∂2Us(xs, ρs)
∂ρ2

s

)
xs − ∂2Us(xs, ρs)

∂ρ2
s

∂Us(xs, ρs)
∂xs

,

qs(xs, ρs) =
∂2Us(xs, ρs)

∂ρ2
s

.

Lemma 2. If gs(xs, ρs) < 0, hs(xs, ρs) < 0, and qs(xs, ρs) < 0, then U ′
s(x

′
s, ρs) is a concave function of x′s and

ρs.

Now the joint rate-reliability problem (61) can be solved distributively through dual decomposition.

Algorithm 3. Differentiated Dynamic Reliability Policy Algorithm.

In each iteration t, by solving (63) over (x′s, ρs), each source s determines its information data rate and
requested reliability (i.e., x′s(t) or equivalently, xs(t) = ex′s(t), and ρs(t)) that maximize its net utility based on the
prices in the current iteration. Furthermore, by price update equation (64), the source adjusts its offered price per
unit reliability for the next iteration.

Source problem and reliability price update at source s:

• Source problem:
mazimize Us(x′s, ρs)− λs(t)x′s − µs(t)ρs

subject to ρmin
s ≤ ρs ≤ 1,

(63)

where λs(t) =
∑

l∈L(s) λl,s(t) is the end-to-end congestion price at iteration t.

• Price update (where step size can be set to β(t) = β0

t for some β0 > 0):

µs(t + 1) = [µs(t)− β(t) (ρs(t)− ρs(t))]
+ , (64)

where ρs(t) = 1−∑
l∈L(s) El(rl,s(t)) is the end-to-end reliability at iteration t.
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Concurrently in each iteration t, by solving problem (65) over (cl,s, rl,s), ∀s ∈ S(l), each link l determines
the allocated transmission capacity cl,s(t) and the code rate rl,s(t) of each of the sources using the link, so as to
maximize the “net revenue” of the network based on the prices in the current iteration. In addition, by price update
equation (66), the link adjusts its congestion price per unit rate for source s during the next iteration.

Link problem and congestion price update at link l:

• Link problem:
maximize

∑
s∈S(l) λl,s(t)(log cl,s + log rl,s)− µs(t)El(rl,s)

subject to

∑
s∈S(l) cl,s ≤ Cmax

l

0 ≤ cl,s ≤ Cmax
l , s ∈ S(l)

0 ≤ rl,s ≤ 1, s ∈ S(l).

(65)

• Price update (where step size can be set to β(t) = β0

t for some β0 > 0):

λl,s(t + 1) =
[
λl,s(t)− β(t)

(
log cl,s(t) + log rl,s(t)− x′s(t)

)]+

= [λl,s(t)− β(t) (log cl,s(t) + log rl,s(t)− log xs(t))]
+ , s ∈ S(l). (66)

In the above algorithm, to solve problem (63), source s needs to know λs(t), the sum of congestion prices
λl,s(t)’s of links that are along its path L(s). This can be obtained by the notification from the links, e.g., through
acknowledgment packets. To carry out price update (64), the source needs to know the sum of error probabilities
of the links that are along its path (i.e., its own reliability that is provided by the network, ρs(t)). This can be
obtained by the notification either from the links that determine the code rate for the source (by solving problem
(65)) or from the destination that can measure its end-to-end reliability. To solve the link problem (65), each link
l needs to know µs(t) from each of sources using this link l. This can be obtained by the notification from these
sources. To carry out price update (66), the link needs to know the information data rate of each of the sources that
are using it (i.e., xs(t)). This can be obtained by measuring it by the link itself.

Method 14. End user generated pricing for distributed update of metrics in user utility objective function.

Theorem 11. For sufficiently concave utilities and sufficiently strong codes, the dual variables λ(t) and µ(t)
converge to the optimal dual solutions λ∗ and µ∗ and the corresponding primal variables x

′∗, ρ∗, c∗, and r∗ are
the globally optimal primal solutions of the joint rate-reliability problem, i.e., x∗ = (ex

′∗
)∀s, ρ∗, c∗, and r∗ are

the globally optimal primal solutions of problem (61).

We now present numerical examples for the proposed algorithms by considering a simple network, shown in
Figure 12, with a linear topology consisting of four links and eight users. Utility function for user s is Us(xs, ρs)
in the following α-fair form, shifted such that Us(xmin

s , ρmin
s ) = 0 and Us(xmax

s , ρmax
s ) = 1, and with utility on

rate and utility on reliability summed up with a given weight θs between rate and reliability utilities:

Us(xs, ρs) = θs
x1−α

s − x
min(1−α)
s

x
max(1−α)
s − x

min(1−α)
s

+ (1− θs)
ρ
(1−α)
s − ρ

min(1−α)
s

ρ
max(1−α)
s − ρ

min(1−α)
s

.
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Figure 12: Network topology and flow routes for a rate-reliability tradeoff example.

Different weights θs are given to the eight users as follows:

θs =
{

0.5− v, if s is an odd number
0.5 + v, if s is an even number

(67)

and vary v from 0 to 0.5 in step size of 0.05.

The decoding error probability on each link l is assumed to be of the following form:

pl =
1
2

exp(−M(1− rl)).

We trace the globally optimal tradeoff curve between rate and reliability using differentiated and integrated
dynamic reliability policies, and compare the network utility achieved by the following three schemes:

• Static reliability: each link provides a fixed error probability 0.025. Only rate control is performed to
maximize the network utility.

• Integrated dynamic reliability: each link provides the same adjustable error probability to all its users.

• Differentiated dynamic reliability: each link provides a possibly different error probability to each of its
users.

Figure 13 shows the globally optimal tradeoff curves between rate and reliability for a particular user, under the
three policies of static reliability, integrated dynamic reliability, and differentiated dynamic reliability, respectively.
The differentiated scheme shows a much larger dynamic range of tradeoff than both the integrated and static
schemes. The gain in total network utility through joint rate and reliability control is shown in Figure 14.
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Figure 13: Comparison of data rate and reliability tradeoff in each policy for user 2, when θs are changed according
to (67).

3.1.3 Case 3: Jointly optimal congestion and contention control

For joint end-to-end rate allocation and per-hop medium access control, the generalized NUM problem for random-
access-based MAC and TCP can be formulated as follows:

maximize
∑

s Us(xs)
subject to

∑
s∈S(l) xs ≤ clpl

∏
k∈NI

to(l)(1− P k), ∀l∑
l∈Lout(n) pl = Pn, ∀n

xmin
s ≤ xs ≤ xmax

s , ∀s
0 ≤ Pn ≤ 1, ∀n
0 ≤ pl ≤ 1, ∀l.

(68)

Similar to the discussions on MAC forward engineering and jointly optimal rate reliability control, for suf-
ficiently concave utilities, problem (68) is a convex optimization after a log change of variables {pl, P

k}. Its
solution can now be distributively carried out using either the standard primal-based penalty function approach
or the dual-based Lagrangian relaxation approach, both with standard convergence properties but now producing
different implications to the timescale of TCP/MAC interaction, as shown in the rest of this subsection.

First the penalty function approach is pursued. We first define hl(p,x′) = log(
∑

s∈S(l) ex′s) − c′l − log pl −
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Figure 14: Comparison of the achieved network utility attained by the differentiated dynamic policy, the integrated
dynamic policy, and the static policy, when θs are changed according to (67).

∑
k∈NI

to(l) log(1−∑
m∈Lout(k) pm) and wn(p) =

∑
m∈Lout(n) pm − 1. Then, problem (68) can be rewritten as

maximize
∑

s U ′
s(x

′
s)

subject to hl(p,x′) ≤ 0, ∀l
wn(p) ≤ 0, ∀n
x′min

s ≤ x′s ≤ x′max
s , ∀s

0 ≤ pl ≤ 1, ∀l.

(69)

Instead of solving problem (69) directly, we apply the penalty function method and consider the following problem:

maximize V (p,x′)
subjec to x′min

s ≤ x′s ≤ x′max
s , ∀s

0 ≤ pl ≤ 1, ∀l,
(70)

where V (p,x′) =
∑

s U ′
s(x

′
s)− κ

∑
l max{0, hl(p,x′)} − κ

∑
n max{0, wn(p)} and κ is a positive constant.

Since the objective function of problem (70) is concave, problem (70) is convex optimization with simple,
decoupled constraints, which can be solved by using a subgradient projection algorithm. We can easily show that

∂V (p,x′)
∂pl

= κ

(
εl

pl
−

∑
k∈LI

from(tl)
εk

1−∑
m∈Lout(tl)

pm
− δtl

)
, (71)

and
∂V (p,x′)

∂x′s
=

∂U ′
s(x

′
s)

∂x′s
− κex′s

∑

l∈L(s)

εl∑
k∈S(l) ex′k

, (72)
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where

εl =





0, if
∑

n∈S(l)

ex′n ≤ clpl

∏

k∈NI
to(l)

(1−
∑

m∈Lout(k)

pm)

1, otherwise

and

δn =
{

0, if
∑

m∈Lout(n) pm ≤ 1
1, otherwise

.

Then, an iterative subgradient projection algorithm, with iterations indexed by t, that solves problem (70) is ob-
tained as follows. On each logical link, transmission is decided to take place with persistence probability

pl(t + 1) =
[
p(t) + α(t)

∂V (p,x′)
∂pl

|p=p(t),x′=x′(t)

]1

0

, ∀l, (73)

and concurrently at each source, end-to-end rate is adjusted:

x′s(t + 1) =
[
x′s(t) + α(t)

∂V (p,x′)
∂x′s

|p=p(t),x′=x′(t)

]x′max
s

x′min
s

, ∀s, (74)

where [a]bc = max{min{a, b}, c}.

The joint control algorithm (73,74) can be implemented as follows. Each link l (or its transmission node tl)
updates its persistence probability pl(t) using (73), and concurrently, each source updates its data rate xs(t) using
(74). To calculate the subgradient in (71), each link needs information only from link k, k ∈ LI

from(tl), i.e., from
links whose transmissions are interfered from the transmission of link l, and those links are in the neighborhood
of link l. To calculate the subgradient in (72), each source needs information only from link l, l ∈ L(s), i.e.,
from links on its routing path. Hence, to perform the algorithm, each source and link need only local information
through limited message passing and the algorithm can be implemented in a distributed way. In particular, note
that δn is calculated at the transmitter node of each link to update the persistence probability of that link, and
does not need to be passed among the nodes. There is no need to explicitly pass around the values of persistence
probabilities, since their effects are included in {εl}. Quantities such as

∑
m∈Lout(tl)

pm and
∑

k∈S(l) exp(x
′
k) can

be measured locally by each node and each link.

To implement a dual-based algorithm instead, we can decompose problem (68) into two problems, using a
standard technique of dual decomposition also used in [10, 105]:

maximize
∑

s Us(xs)
subject to

∑
s∈S(l) xs ≤ yl,∀l

xmin
s ≤ xs ≤ xmax

s ,∀s,
(75)

where yl is the average data rate of link l, and

maximize Û(p)
subject to

∑
m∈Lout(n) pm ≤ 1, ∀n

0 ≤ pl ≤ 1, ∀l,
(76)
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where

Û(p) = max





∑
s

Us(xs) |
∑

s∈S(l)

xs ≤ yl(p), ∀l,

yl(p) = clpl

∏

k∈NI
to(l)

(1−
∑

m∈Lout(k)

pm), ∀l,

xmin
s ≤ xs ≤ xmax

s , ∀s} .

For a given y, problem (75) can be solved by dual decomposition and distributed subgradient method just as
before.

We now solve problem (76). To this end, we first add a penalty function to the objective function of the problem
as:

maximize V̂ (p)
subject to 0 ≤ pl ≤ 1, ∀l, (77)

where V̂ (p) = Û(p) − κmax{0,
∑

n(1 − ∑
m∈Lout(n) pm)} and κ is a positive constant. As in the previous

subsection, since problem (77) is a convex problem with simple constraints, we can solve it by using a subgradient
projection algorithm as:

pl(t + 1) =

[
p(t) + β(t)

∂V̂ (p)
∂pl

|p=p(t)

]1

0

, ∀l, (78)

where ∂V̂ (p)
∂pl

is a subgradient of V̂ (p) with respect to pl. It can be readily verified that ∂V̂ (p)
∂pl

is obtained as:

∂V̂ (p)
∂pl

= λ∗l (t)cl

∏

k∈NI
to(l)


1−

∑

m∈Lout(k)

pm




−
∑

n∈LI
from(tl)

λ∗n(t)cnpn

∏

k∈NI
to(n),k 6=tl


1−

∑

m∈Lout(k)

pm


− κδtl , (79)

where

δn =
{

0, if
∑

m∈Lout(n) pm ≤ 1
1, otherwise

and λ∗(t) is the optimal dual solution to dual problem of (75) with y = y(p(t)).

This dual-based algorithm can also be implemented in a distributed way. In each time-slot, each link determines
its persistence probability by solving (78) with the help of local message passing to obtain the expression in (19).
Then, within the time-slot, based on y(p(t)), each source and link use standard dual-based algorithm to solve (75)
and determine the data rate of each source in the time-slot.
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Unlike with the primal-based algorithm, this dual-based algorithm clearly decomposes TCP and MAC layers
through the vertical decomposition (75) and (76). However, it needs an embedded loop of iterations (i.e., the
convergence of a distributed subgradient algorithm to solve (75) in each time-slot). Hence, it usually requires
much longer convergence time than the primal-based algorithm.

Method 15. Providing different timescales of protocol stack interactions through different decomposition methods.

3.1.4 Case 4: Jointly optimal congestion control, routing, and scheduling

A generalized NUM is formulated in [94, 73, 23, 59, 11] where the key additional feature is the optimization over
not just source rates but also scheduling of medium access and the incorporation of scheduling constraint. The
standard dual decomposition decomposes it vertically into subproblems that can be solved through TCP, routing
and scheduling.

Consider an ad hoc wireless network with a set N of nodes and a set L of logical links. We assume some form
of power control so that each logical link l has a fixed capacity cl when it is active. The feasible rate region at
the link layer is the convex hull of the corresponding rate vectors of independent sets of the conflict graph. Let Π
denote the feasible rate region. Let xk

i be the flow rate generated at node i for destination k. We assume there is
a queue for each destination k at each link (i, j). Let fk

ij be the amount of capacity of link (i, j) allocated to the
flows on that link for final destination k. Consider the following generalized NUM in variables xs ≥ 0, fk

ij ≥ 0:

maximize
∑

s Us(xs)
subject to xk

i ≤
∑

j:(i,j)∈L fk
ij −

∑
j:(j,i)∈L fk

ji, ∀i, j, k
∈ Π

(80)

where xs is a shorthand for xk
i . The first constraint is flow balance equation: the flow originated from node i for

final destination k plus total capacity allocated for transit flows through node i for final destination k should be no
more than the total capacity going out of node i for final destination k. The second constraint is on schedulability.
The dual problem of (80) decomposes into the following two subproblems:

max
λ≥0

D1(λ) := max
xs≥0

∑
s

(Us(xs)− xsλs) (81)

max
λ≥0

D2(λ) := max
fk

ij≥0

∑

i,k

λk
i

∑

j

(fk
ij − fk

ji) s. t. bf ∈ Π (82)

The first subproblem is congestion control where λs is the congestion price locally at source s = (i, k). The second
subproblem corresponds to a joint problem of multi-path routing and allocation of link capacities. Thus, by dual
decomposition, the flow optimization problem decomposes into separate local optimization problems of transport,
network and physical layers which interact through congestion prices.

The congestion control problem (81) admits a unique maximizer xs(λ) = U ′−1
s (λs). The joint routing and
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scheduling problem (82) is equivalent to

max
λ≥0

∑

i,j

∑

k

max
fk

ij≥0
fk

ij(λ
k
i − λk

j ) s. t. ∈ Π

Hence an optimal schedule is to have fk
ij = cij if k maximizes (λk

i − λk
j ) and 0 otherwise. This motivates the

following joint congestion control, scheduling and routing algorithm:

1. Congestion control: the source of flow s sets its rate as xs(λ) = U ′−1
s (λs).

2. Scheduling:

• For each link (i, j), find destination k∗ such that k∗ ∈ arg maxk (λk
i −λk

j ) and define w∗ij := λk∗
i −λk∗

j .
• Choose an˜ ∈ arg max∈Π

∑
(i,j)∈L w∗ijfij such that˜is an extreme point. Those links (i, j) with

f̃ij > 0 will transmit and other links (i, j) (with f̃ij = 0) will not.

3. Routing: over link (i, j) ∈ L with f̃ij > 0, send data for destination k∗ at full link capacity cij .

4. Price update: each node i updates the price on the queue for destination k according to:

λk
i (t + 1) =


λk

i (t) + β


xk

i (λ(t))−
∑

j:(i,j)∈L

fk
ij(λ(t)) +

∑

j:(j,i)∈L

fk
ji(λ(t))







+

(83)

The w∗ij values represent the maximum differential congestion price of destination k packets between nodes i
and j, and was introduced in [102]. The above algorithm uses back pressure to perform optimal scheduling and
hop-by-hop routing.

Method 16. Maximum differential congestion pricing for node-based back-pressure scheduling.

Method 17. Architectural implication due to dual decomposition: absorb routing functionality into congestion
control and scheduling.

It is easy to show that the generalized NUM has no duality gap. It is shown in [11] that the algorithm converges
statistically to a neighborhood of the optimal point using constant stepsize, in the sense that the time averages tend
to the optimal values arbitrarily closely. Specifically, let the primal function (the total achieved network utility) be
P (x) and let x∗ be the optimum. Let x(t) := 1

t

∑t
τ=0 x(τ) be the running average rates. Similarly, recall that

D(λ) is the dual objective function. Let λ∗ be an optimal value of the dual variable and λ(t) := 1
t

∑t
τ=1 λ(τ) be

the running average prices.

Theorem 12. Consider the dual of (80) and suppose the subgradient of the dual objective function is uniformly
bounded. Then for any δ > 0 there exist a sufficiently small stepsize β in (83) such that

lim inf
t→∞ P (x(t)) ≥ P (x∗)− δ

lim sup
t→∞

D(λ(t)) ≤ D(λ∗) + δ
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Instead of using dual algorithm, as in [73, 11], where the congestion control part (Step 1 above) is static, the
algorithms in [94, 23] are primal-dual where the source congestion control algorithm can be interpreted as an
ascent algorithm for the primal problem.

The most difficult step in the above algorithm is scheduling. Solving it exactly requires a centralized com-
putation which is clearly impractical in large scale networks. Various scheduling algorithms and heuristics have
been proposed in the context of joint rate allocation, routing, and scheduling. The effects of imperfect scheduling
on cross-layer design has recently been characterized in [59], for both the case when the number of users in the
system is fixed and the case with dynamic arrivals and departures of the users.

3.2 Decomposition Methods

3.2.1 Decoupling coupled constraints

The basic idea of a decomposition is to decompose the original large problem into subproblems which are then
coordinated by a master problem by means of some kind of signalling [4]. Many of the existing decomposition
techniques can be classified into primal decomposition and dual decomposition methods. The former (also called
partitioning of variables, decomposition by right-hand side allocation, or decomposition with respect to variables)
is based on decomposing the original primal problem, whereas the latter (also termed Lagrangian relaxation of the
coupling constraints or decomposition with respect to constraints) is based on decomposing the dual of the problem.
As illustrated in Figure 15, primal decomposition methods have the interpretation that the master problem directly
gives each subproblem an amount of resources that it can use; the role of the master problem is then to properly
allocate the existing resources. In dual decomposition methods, the master problem sets the price for the resources
to each subproblem which has to decide the amount of resources to be used depending on the price; the role of the
master problem is then to obtain the best pricing strategy. Roughly speaking, the engineering mechanism realizing
dual decomposition is pricing feedback while that realizing primal decomposition is adaptive slicing.

Note that the terminology of “primal-dual” has a number of different meanings. For example, “primal-dual
interior-point method” is a class of algorithms for centralized computation of an optimum for convex optimization,
“primal-dual distributed algorithm” is sometimes used to describe any algorithm that solves the primal and dual
problems simultaneously, and “primal-driven penalty function approach” and “dual-driven pricing approach” have
been used in the earlier discussion on congestion control and TCP/MAC joint design. In this subsection, primal
and dual decompositions have a different meaning of decomposing coupling constraints through direct resource
allocation and indirect pricing control, respectively.

We first illustrate how the dual decomposition approach can be applied to the basic NUM problem to produce
the standard dual-based distributed algorithm. The Lagrange dual problem of (3) is readily derived. We first form
the Lagrangian:

L(x, λ) =
∑

s

Us(xs) +
∑

l

λl


cl −

∑

s∈S(l)

xs




where λl ≥ 0 is the Lagrange multiplier (i.e., link price) associated with the linear flow constraint on link l.
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Figure 15: A schematic illustrating problem decomposition.

Master Problem
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Figure 16: A schematic illustrating multi-level decomposition.

Additivity of total utility and linearity of flow constraints lead to a Lagrangian dual decomposition into individual
source terms:

L(x,λ) =
∑

s


Us(xs)−


 ∑

l∈L(s)

λl


xs


 +

∑

l

clλl

=
∑

s

Ls(xs, qs) +
∑

l

clλl

where qs =
∑

l∈L(s) λl. For each source s, Ls(xs, qs) = Us(xs)− qsxs only depends on local rate xs and the path
price qs (i.e., sum of λl on links used by source s).

The Lagrange dual function D(λ) is defined as the maximized L(x, λ) over x for a given λ. This ‘net utility’
maximization obviously can be conducted distributively by the each source:

x∗s(qs) = argmax [Us(xs)− qsxs] , ∀s. (84)

Such Lagrangian maximizer x∗(λ) will be referred to as price-based rate allocation (for a given price λ). The
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Lagrange dual problem of (3) is
minimize D(λ) = L(x∗(λ), λ)
subject to λ º 0

(85)

where the optimization variable is λ. Since D(λ) is the pointwise supremum of a family of affine functions in
λ, it is convex and (85) is a convex minimization problem. Since g(λ) may be non-differentiable, an iterative
subgradient method can be used to update the dual variables λ to solve the dual problem (85):

λl(t + 1) =


λl(t)− β(t)


cl −

∑

s∈S(l)

xs(qs(t))







+

, ∀l (86)

where cl −
∑

s∈S(l) xs(qs(t)) is the lth component of a subgradient vector of D(λ), t is the iteration number, and
β(t) > 0 are step sizes. Certain choices of step sizes, such as β(t) = β0/t, β > 0, guarantee that the sequence
of dual variables λ(t) converges to the dual optimal λ∗ as t → ∞. It can be shown that the primal variable
x∗(λ(t)) also converges to the primal optimal variable x∗. For a primal problem that is a convex optimization, the
convergence is towards a global optimum.

In summary, the sequence of source and link algorithms (84,86) forms a standard dual-based distributed algo-
rithm that globally solves NUM (3) and the dual problem (85), and computes an optimal rate vector x∗ and optimal
link price vector λ∗. Note that no explicit signaling is needed.

The general methodology of primal and dual decompositions is now presented. A more comprehensive tutorial
can be found in [75]. It turns out that primal and dual decompositions are also interchangeable through alternative
representation of the optimization problem.

A primal decomposition is appropriate when the problem has a coupling variable such that, when fixed to
some value, the rest of the optimization problem decouples into several subproblems. Consider, for example, the
following problem over y, {xi}:

maximize
∑

i fi (xi)
subject to xi ∈ Xi, ∀i

Aixi ≤ y, ∀i
y ∈ Y.

∀i
(87)

If variable y were fixed, then the problem would decouple. This suggests separating the optimization in (87) into
two levels of optimization. At the lower level, we have the subproblems, one for each i over xi, in which (87)
decouples when y is fixed:

maximize fi (xi)
subject to xi ∈ Xi

Aixi ≤ y.
(88)

At the higher level, we have the master problem in charge of updating the coupling variable y by solving:

maximize
∑

i f
∗
i (y)

subject to y ∈ Y (89)
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where f∗i (y) is the optimal objective value of problem (88) for a given y.

A subgradient for each f∗i (y) is given by

si (y) = λ∗i (y) , (90)

where λ∗i (y) is the optimal Lagrange multiplier corresponding to the constraint Aixi ≤ y in problem (88).
The global subgradient is then s (y) =

∑
i si (y) =

∑
i λ

∗
i (y). The subproblems in (88) can be locally and

independently solved with the knowledge of y.

A dual decomposition is appropriate when the problem has a coupling constraint such that, when relaxed, the
optimization problem decouples into several subproblems. Consider, for example, the following problem:

maximize
∑

i fi (xi)
subject to xi ∈ Xi∑

i hi (xi) ≤ c.
∀i (91)

If the constraint
∑

i hi (xi) ≤ c were absent, then the problem would decouple. This suggests relaxing the
coupling constraint in (91) as

maximize
∑

i fi (xi)− λT (
∑

i hi (xi)− c)
subject to xi ∈ Xi ∀i (92)

such that the optimization separates into two levels of optimization. At the lower level, we have the subproblems,
one for each i over xi, in which (92) decouples:

maximize fi (xi)− λThi (xi)
subject to xi ∈ Xi.

(93)

At the higher level, we have the master dual problem in charge of updating the dual variable λ by solving the dual
problem:

minimize g (λ) =
∑

i gi (λ) + λT c
subject to λ ≥ 0

(94)

where gi (λ) is the dual function obtained as the maximum value of the Lagrangian solved in (93) for a given
λ. This approach is in fact solving the dual problem instead of the original primal one. Hence, it will only give
appropriate results if strong duality holds.

A subgradient for each gi (λ) is given by

si (λ) = −hi (x∗i (λ)) , (95)

where x∗i (λ) is the optimal solution of problem (93) for a given λ. The global subgradient is then s (λ) =∑
i si (y) + c = c − ∑

i hi (x∗i (λ)). The subproblems in (93) can be locally and independently solved with
knowledge of λ.

62



Method 18. Primal and dual decomposition for coupling constraints.

Not all coupling constraints can be readily decomposed through primal or dual decompositions. For example,
the feasibility set of SIR in wireless cellular network power control problems is coupled in a way with no obvious
decomposability structure. A re-parametrization of the constraint set is required before dual decomposition can be
applied [34].

3.2.2 Decoupling coupled objective

Examining the dual decomposition of the basic NUM reveals that the following are the underlying reasons why
distributed and end-to-end algorithms solves (3):

1. Separability in objective function: The network utility is a sum of individual source utilities.

2. Additivity in constraint functions: The linear flow constraints are summing over the individual flows.

3. Interchangeability of summation index:
∑

l λl
∑

s∈S(l) xs =
∑

s xs
∑

l∈L(s) λl.

4. Zero duality gap.

For cases where property 1 fails, recent progress on coupled utility formulations has been made [95, 96]. In
many communication systems, utilities are indeed coupled. An example of cooperation model can be found in
networks where some nodes form a cluster and the utility obtained by each of them depends on the rate allocated
to others in the same cluster (this can be interpreted as a hybrid model of selfish and non-selfish utilities). An
example of competition model is in wireless power control and DSL spectrum management, where the utilities are
functions of SIRs that are dependent on the transmit powers of other users.

The generalized NUM problem considered in this subsection is

maximize
∑K

k=1 Uk

(
xk, {xl}l∈L(k)

)
subject to xk ∈ Xk ∀k,∑K

k=1 gk (xk) ≤ c
(96)

where the (strictly concave) utilities Uk depend on a vector local variable xk and on variables of other utilities xl

for l ∈ L (k) (i.e., coupled utilities), L (k) is the set of nodes coupled with the kth utility, the sets Xk are arbitrary
convex sets, and the coupling constraining function

∑
k gk (xk) is not necessarily linear, but still convex. Note that

this model has two types of coupling: coupling constraints and coupled utilities.

The key idea to tackle the coupling problem in the utilities is to introduce auxiliary variables and additional
equality constraints, thus transferring the coupling in the objective function to coupling in the constraints, which
can be decoupled by dual decomposition and solved by introducing additional consistency pricing. It is reasonable
to assume that if two nodes have their individual utilities dependent on each other’s local variables, then there
must be some communication channels in which they can locally exchange pricing messages. It turns out that the
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global link congestion price update of the standard dual-based distributed algorithm is not affected by the local
consistency price updates, which can be conducted via these local communication channels among the nodes.

The first step is to introduce in problem (96) auxiliary variables xkl for the coupled arguments in the utility
functions and additional equality constraints to enforce consistency:

maximize
∑

k Uk

(
xk, {xkl}l∈L(k)

)
subject to xk ∈ Xk ∀k,∑

k gk (xk) ≤ c,
xkl = xl, ∀k, l ∈ L (k) .

(97)

Next, to obtain a distributed algorithm, we take a dual decomposition approach by relaxing all the coupling con-
straints in problem (97):

maximize
∑

k Uk

(
xk, {xkl}l∈L(k)

)
+ λT (c−∑

k gk (xk)) +
∑

k,l∈L(k) γT
kl (xl − xkl)

subject to xk ∈ Xk ∀k,
xkl ∈ Xl ∀k, l ∈ L (k)

(98)

where λ are the link prices and the γkl’s are the consistency prices. By exploiting the additivity structure of the
Lagrangian, the Lagrangian is separated into many subproblems where maximization is done using local variables
(the kth subproblem uses only variables with the first subscript index k). The optimal value of (98) for a given set
of γkl’s and λ defines the dual function g({γkl}, λ). The dual problem is then

minimize
{γkl},λ

g({γkl} , λ) subject to λ ≥ 0. (99)

It is worthwhile noting that (99) is equivalent to

minimize
λ

(
minimize
{γkl}

g({γkl} , λ)
)

subject to λ ≥ 0. (100)

Problem (99) is easily solved by simultaneously updating the prices (both the link prices and the consistency
prices) using a subgradient algorithm. In problem (100), however, the inner minimization is fully performed
(by repeatedly updating the {γkl}) for each update of λ. This latter approach implies two timescales: a fast
timescale in which each cluster updates the corresponding consistency prices and a slow timescale in which the
network updates the link prices; whereas the former approach has just one timescale. The formulation with two
timescales is interesting from a practical perspective since consistency prices can be exchanged very quickly over
local communication channels only by nodes that are coupled together.

Therefore, problem (96), where the utilities Uk are strictly concave, the sets Xk are arbitrary convex sets, and
the constraining functions gk are convex, can be optimally solved by the following distributed algorithm:

• the lth link updates the congestion price as

λ(t + 1) =

[
λ(t)− β1

(
c−

∑

k

gk (xk)

)]+

(101)
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where β1 is the stepsize, and then broadcast them to the nodes,

• the kth node, for all k, updates the consistency prices (at a faster or same timescale as the update of λ(t)) as

γkl (t + 1) = γkl (t)− β2 (xl (t)− xkl (t)) , l ∈ L(k) (102)

where β2 is the stepsize, and then broadcast them to the coupled nodes within the cluster, and

• the kth node, for all k, locally solves the problem

maximize
xk,{xkl}r

Uk

(
xk, {xkl}l∈L(k)

)− λT ∑
k gk (xk) +

(∑
l:k∈L(l) γlk

)T
xk −

∑
l∈L(k) γT

klxkl

subject to xk ∈ Xk

xkl ∈ Xl ∀l ∈ L (k)

(103)

where {xkl}l∈L(k) are auxiliary local variables for the kth node.

Summarizing, all the links must advertise their local variables xk (not the auxiliary ones xkl); then a central
unit can update and signal λ to all the links; each link can update the corresponding γkl’s (with knowledge of the
variables xk of the coupled links) and signal it to the coupled links; each link can update the local variable xk as
well as the auxiliary ones xkl. The only additional price due to the coupled utilities is limited signaling between
the coupled links within each cluster.

Method 19. Using consistency pricing to decouple coupled utility objective functions.

3.2.3 Alternative decompositions

Decomposition of a generalized NUM has significant implications to network protocol design along two direc-
tions: vertical (functional) decomposition into layers and horizontal (geographical) decomposition into distributed
computation by network elements. There are many ways to decompose a given NUM formulation along both direc-
tions, each of which provides a different structure to possible solution to the problem through a different layering
scheme. A systematic exploration of alternative decompositions is more than just an intellectual curiosity, it also
leads to different network architectures with a wide range of choices of communication overhead, computation
load, and convergence behavior, as illustrated through some case studies in Section 3.1. There is no “universally”
best decomposition scheme, the choice depends on the specific application context.

An important technique that leads to alternatives of distributed architectures is to apply primal/dual decompo-
sitions recursively. The basic decompositions are repeatedly applied to a problem to obtain smaller and smaller
subproblems. For example, consider the following problem over y, {xi} which includes both a coupling variable
and a coupling constraint:

maximize
∑

i fi (xi,y)
subject to xi ∈ Xi, ∀i∑

i hi (xi) ≤ c
Aixi ≤ y, ∀i
y ∈ Y.

∀i
(104)
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One way to decouple this problem is by first taking a primal decomposition with respect to the coupling variable
y and then a dual decomposition with respect to the coupling constraint

∑
i hi (xi) ≤ c. This would produce

a two-level optimization decomposition: a master primal problem, a secondary master dual problem, and the
subproblems. An alternative approach would be to first take a dual decomposition and then a primal one.

Another example that shows flexibility in terms of different decompositions is the following problem with two
sets of constraints:

maximize f0 (x)
subject to fi (x) ≤ 0, ∀i

hi (x) ≤ 0, ∀i.
∀i (105)

One way to deal with this problem is via the dual problem with a full relaxation of both sets of constraints to
obtain the dual function g (λ, µ). At this point, instead of minimizing g directly with respect to λ and µ, it can be
minimized over only one set of Lagrange multipliers first and then over the remaining one: minλ minµ g (λ,µ).
This approach corresponds to first applying a full dual decomposition and then a primal one on the dual problem.
The following lemma [76] characterizes the subgradient of the master problem at the top level.

Lemma 3. Consider the following partial minimization of the dual function

g (λ) = inf
µ

g (λ, µ) (106)

where g (λ, µ) is the dual function defined as

g (λ, µ) , sup
x∈X

{
f0 (x)−

∑

i

λifi (x)−
∑

i

µihi (x)

}
. (107)

Then, g (λ) is convex and a subgradient, denoted by sλ (λ), is given by

sλi (λ) = −fi (x∗ (λ,µ∗ (λ))) (108)

where x∗ (λ, µ) is the value of x that achieves the supremum in (107) for a given λ and µ, and µ∗ (λ) is the value
of µ that achieves the infimum in (106).

Alternatively, problem (105) can be approached via the dual but with a partial relaxation of only one set of
constraint, say fi (x) ≤ 0, ∀i, obtaining the dual function g (λ) to be minimized by the master problem. Observe
now that in order to compute g (λ) for a given λ, the partial Lagrangian has to be maximized subject to the
remaining constraints gi (x) ≤ 0, ∀i, for which yet another relaxation can be used. This approach corresponds to
first applying a partial dual decomposition and then, for the subproblem, another dual decomposition.

Note that there can be different orderings of update, including the choice of parallel (Jacobi) or sequential
(Gauss-Siedel) updates [4]. When there are more than one level of decomposition, and all levels conduct some
type of iterative algorithms, such as the subgradient method, convergence and stability are guaranteed if the lower
level master problem is solved on a faster timescale than the higher level master problem, so that at each iteration
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of a master problem all the problems at a lower level have already converged. If the updates of the different
subproblems operate on similar timescales, convergence of the overall system can still be guaranteed under certain
technical conditions [86, 4].

Method 20. Partial and hierarchical decompositions for architectural alternatives of the protocol stack.

As another example, consider the following special case of NUM in variables (x,y):

maximize
∑

i Ui(xi)
subject to fi(xi, yi) = 0, ∀i

yi ∈ Yi, ∀i∑
i gi(xi, yi) ≤ 1

(109)

where x models the performance metrics that users utilities depend on and y models some resources that are glob-
ally coupled and have local impacts on performance. This problem has applications in distributed waterfilling algo-
rithms in DSL spectrum management and distributed power control algorithms in wireless cellular networks, and
can be decomposed in at least seven different ways following three general approaches below. Each decomposition
results in a new possibility in striking the most appropriate tradeoff between computation and communication.

1. A primal decomposition approach. Problem (109) decouples if the yi’s are fixed. We can decompose the
original problem into the master problem over y:

maximize
∑

i Ũi (yi)
subject to yi ∈ Yi∑

i gi (yi) ≤ 0
∀i (110)

where each Ũi (yi) is the optimal objective value of the subproblem over xi:

maximize Ui (xi)
subject to xi ∈ Xi

fi (xi, yi) ≤ 0.
(111)

Each of the subproblems can be solved in parallel and only needs to know its local information (i.e., the
local functions Ui, fi and the local set Xi) and the corresponding yi (given by the master problem). Once
each subproblem is solved, the optimal value Ũi (yi) and (possibly) a subgradient can be communicated to
the master problem. In this case, the master problem needs to communicate to each of the subproblems the
available amount of resources yi allocated.

2. A full dual decomposition approach with respect to all coupling constraints fi (xi, yi) ≤ 0 and
∑

i gi (yi) ≤
0. The master dual problem is to

minimize g(λ, γ) (112)
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over λ, γ ≥ 0 where g (λ, γ) is given by the sum of the optimal objective values of the following subprob-
lems over (xi, yi) for each i:

maximize Ui (xi)− λifi (xi, yi)− γgi (yi)
subject to xi ∈ Xi.

(113)

Each of the subproblems can be solved in parallel and only needs to know its local information and the
Lagrange multipliers λi and γ (given by the master problem). Once each subproblem is solved, the optimal
value and (possibly) a subgradient (given by −fi (xi, yi) and −gi (yi)) can be communicated to the master
problem. In this case, the master dual problem needs to communicate to each of the subproblems the private
price λi and the common price γ.

3. A partial dual decomposition approach only with respect to the global coupling constraint
∑

i gi (yi) ≤ 0.
The master dual problem over γ ≥ 0:

minimize g (γ) (114)

where g (γ) is given by the sum of the optimal objective values of the following subproblems for all i:

maximize Ui (xi)− γgi (yi)
subject to xi ∈ Xi

fi (xi, yi) ≤ 0.
(115)

Each of the subproblems can be solved in parallel and only needs to know its local information and the
Lagrange multiplier γ (given by the master problem). Once each subproblem is solved, the optimal value
and (possibly) a subgradient, given by −gi (yi), can be communicated to the master problem. In this case,
the master dual problem needs to communicate to each of the subproblems simply the common price γ.

The amount of signalling of the three decomposition methods is summarized in Table 8. In this particular type
of generalized NUM, method 1 is the worst since it requires the largest amount of signalling in both directions.
Method 3 is the best, requiring a single common price from the master problem to the subproblems and a single
number from each subproblem to the master problem. Method 2 is intermediate, requiring the same amount as
method 3 plus an additional individual price from the master problem to each subproblem.

For a particular instance of problem (109), a numerical example for the convergence results of various hori-
zontal decomposition possibilities is shown in Figure 17.

There are also many possibilities for vertical decomposition. For example, in [10] it is shown that the joint
TCP and MAC design problem may be formulated as maximizing network utility subject to the constraint that
FRx ¹ c, where F is a contention matrix and R is the routing matrix. Then depending whether we first group
Rx or FR in the constraint, the Lagrange dual variables we introduce are different, corresponding to either drawing
a division between TCP and MAC or not.

Implicit in all decompositions is a choice of particular representation of the constraints. Since every individual
constraint (e.g., capacity of a link) gives rise to a corresponding Lagrange multiplier, we have the surprising
consequence that the specific dual problems will be different depending on how the primal constraints are written.
Even redundant constraints that may change the dual problem properties.
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Figure 17: Different speeds of convergence for seven different alternatives of horizontal decomposition in a partic-
ular numerical example of (109). Each curve corresponds to a different decomposition structure.

3.3 Related Work

Following is a non-exhaustive list of some of the recent publications using “Layering as Optimization Decompo-
sition” for vertical decomposition 8. Some of the key results presented in these papers have been explained or
briefly outlined in Section 3.1. Almost all of the following papers start with some generalized NUM formulations,
and use either dual decomposition or primal penalty function approach to modularize and distribute the solution
algorithm followed by proofs of optimality, stability, and fairness. The individual modules in the holistic solu-
tion range from adaptive routing and distributed matching to information-theoretic source coding and video signal
processing, coupled through implicit or explicit message passing of functions of appropriate “layering price”.

• Jointly optimal congestion control and adaptive coding or power control [13, 55]

• Jointly optimal congestion and contention control [10, 42, 57, 105, 120, 121]

• Jointly optimal congestion control and scheduling [23, 1, 68]

• Jointly optimal routing and power control [74, 115]

• Jointly optimal congestion control, routing, and scheduling [11, 59]

• Jointly optimal routing, scheduling, and power control [18, 114]
8We apologize in advance for any references we may have missed and would appreciate any information about other citations.
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• Jointly optimal routing, resource allocation, and source coding [119]

• TCP/IP interactions [106, 35] and jointly optimal congestion control and routing [33, 43, 47, 51, 77]

• Network lifetime maximization [71]

4 Future Research Directions

Despite the progress made over the last several years, there are still a variety of open issues in the area of “Layering
as Optimization Decomposition”. Some of the main challenges and recent progress are outlined in this section.

4.1 Modeling and Complexity Challenges

First of all, there are semantic functionalities, such as session initiation and packet reordering, that we do not
explicitly model. Border Gateway Protocol (BGP) in IP protocol and a variety of wireless ad hoc network routing
protocols are yet to be fully incorporated in network utility maximization framework. Much further work also
remains to be done to model utility functions in specific applications, especially inelastic, real-time applications
such as VoIP and streaming media. In a more refined physical/link layer model, the option of forwarding rather
than re-encoding at intermediate nodes must be considered, as well as layer 2 retransmission schemes through
ARQ.

Several important modules commonly encountered in many cases of “Layering as Optimization Decomposi-
tion” still do not have simple, distributed solutions. An important example is the need for distributed and fast
scheduling algorithms. Similarly, most of the cross-layer design has focused on the optimal message passing
across layers and theoretical investigation on parameters such as stepsize. A systematic study on suboptimal mes-
sage passing heuristics and practical guidelines in choosing algorithmic parameters would help characterize the
optimal tradeoff between complexity and suboptimality gap.

4.2 Exploration of Alternative Decompositions

As discussed in Subsection 3.2.3, while different representations of a given generalized NUM problem do not
change the optimum (the performance benchmark of resource allocation), they may lead to different decompos-
ability structures, which in turn provide alternative decompositions and distributed network architectures. Further
research is needed for systematically comparing vertical decomposition alternatives and generating alternative de-
compositions from different problem representations. While it is impossible to determine a universally “best”
decomposition, certain principles such as convergence speed, robustness with respect to stochastic variations in the
network, and stability under delay are some metrics that can be used to compare among alternative architectures.
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4.3 Research Issues Involving “Time”

Different functions in each layer operate in timescales that may be several orders of magnitude different. For
example, the application layer timescale is often determined by the user behavior, the transport layer timescale
by the RTT in traversing the network, the physical layer timescale by the physics of the transmission medium.
Iterative algorithms themselves also have a timescale of operation determined by their rate of convergence, which
is often difficult to bound tightly.

Added to the complexity of timescale issue is that the transient behaviors of optimization models in many
layers are not well understood, even without crossing the layers. In some application scenarios such as wireless
network power control, if the allocated resource such as SIR drops below a certain threshold, that connection may
be dropped, turning “equilibrium” into an irrelevant concept. Bounding the transient behavior of “Layering as
Optimization Decomposition” algorithms is a challenging topic.

Utility functions are often modeled as functions of equilibrium rates. For applications involving real-time
control or multi-media communication through resource allocations provided by solutions to generalized NUM,
utility should instead be a function of latency or even the entire vector of rate allocation through the transients.
How to maximize such utility functions remains an under-explored topic.

4.4 Stochastic NUM

Stochastic theory of communication networks has a long and rich history. However, many key problems in this area
remain open despite decades of effort. Since late 1990s, various researchers have used deterministic fluid model
to remove packet level details and microscopic queuing dynamics, followed by an optimization/game/control-
theoretic approach. By assuming deterministic fluids with infinite backlog, we avoid the difficulty of coupling
across links in a general queuing network and are often able to prove optimal design in network resource allocation.
It is important, however, to incorporate the dynamics at session, packet, channel, and topology level to generalized
NUM formulations. In such a unifying framework, service rates of queues are determined by distributed solution
to NUM while parameters of NUM formulations are stochastically varying.

Stochastic models arise due to several reasons:

• Flow level (also referred to as session level, connection level, or end-user level): flows arrive and depart with
finite workload, rather than holding infinite backlog and staying in the network forever.

• Packet level: packets of each flow arrive in bursts and at microscopic level goes through probabilistic marking
and interact with uncontrolled flows such as those running UDP.

• Channel level: network transmission conditions is time-varying rather than fixed.

• Topology level: nodes may disappear and re-appear (based on mobility and battery consumption models)
rather than fixed.
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A combination of stochastic network control and optimization-based resource allocation raises challenging
new questions, including stochastic stability, average case performance, outage performance, and, eventually, the
distribution of attained utility as induced by the distributions of the stochastic models at various levels. Among
these questions, stochastic stability is the most basic and important one: under what conditions will a certain
distributed algorithm of a NUM problem remain stochastically stable, in the sense that the number of flows and
the total queue length in the network remain finite?

4.4.1 Session level stochastic

Consider flow level dynamics characterized by the random arrivals and departures of flows. For each type r, flows
arrive and depart according to a Poisson process with intensity λr, and the size of the flows to be transmitted is
exponentially distributed with mean 1/µr. The traffic load is ρr = λr/µr. Let Nr be the number of ongoing flows,
i.e., the number of type r flows in the network. It is a Markov process with transition rates:

• Nr(t) → Nr(t) + 1, with rate λr

• Nr(t) → Nr(t)− 1, with rate µrxr(t)Nr(t)

For the basic NUM, it is shown [5, 69, 20, 116] that the stochastic stability region is the interior of feasibility
rate region formed by the fixed link capacities, i.e., the following condition is sufficient to guarantee stochastic
stability of the dual-based solution to the basic NUM for many utility functions:

Rρ < c. (116)

These results assumed time scale separation. However, in many practical networks, flow level stochastic operates
on a fast timescale, with the arrive-and-depart process of flows varying constantly. Hence, instantaneous conver-
gence of the rate allocation algorithm may not hold. [60, 92] extend the above result to the case without time-scale
separation assumption: [60] studies α-fair utilities using a discrete-time model and shows that there is an upper
bound on the step size that would guarantee stochastic stability, and [92] shows similar results for α-fair utilities
using the fluid limit model.

Another branch of the stability study is based on the fluid limit model where large capacity scaling is used.
[19] has established the stability of the Markov chain by checking the stability of its corresponding fluid limits.
Using this technique, [117] relaxes the assumption of Poisson arrivals , by studying a general stationary and a
bursty network model respectively. It is shown that under the natural stability condition (116), many bandwidth
allocation policies ensure network model stability for the stationary arrival case. Recently [50] studies a model
which features flows of two types, file transfers and streaming traffic, and generalizes the congestion control
problem with convex constraints. Also recently [6] correlates the utility maximization to classical queueing theory,
and studies several typical utility functions and the stability condition of each. All these work implicitly assume
timescale separation. Stochastic stability for any strictly concave maximization over general convex constraints
without timescale separation is recently reported in [61].
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Table 9 summarizes the existing results on flow level stochastic, where “t.s.s” means timescale separation;
“Θo” denotes the interior of the feasible rate region.

4.4.2 Packet level stochastic

Randomness at packet level may be a result of probabilistic marking of certain AQM schemes. It can also model
“mice” traffic which is not captured in the standard utility maximization model. In [2], a detailed stochastic model
is presented to model N TCP Reno sources sharing a single bottleneck link with capacity Nc implementing RED.
They show that as the number of sources and the link capacity both increase linearly, the queue process converges
(in appropriate sense) to a deterministic process described by differential equations as usually assumed in the
literature. Even though these results are proved only for a single bottleneck node, they provide a justification for
the popular deterministic fluid model by suggesting that the deterministic process is the limit of a scaled stochastic
process as the number of flows tends to infinity.

Similar convergence results are shown in [21, 87]: the deterministic delay differential equation model with
noise replaced by its mean value is accurate asymptotically in time and the number of flows. Because such con-
vergence is shown asymptotically in time (except in the special case of log utility [87] where it is shown for each
time), the trajectory of the stochastic system does not converge to that of the deterministic system in the many-flow
regime [21]. However, [21] shows that the global stability criterion for a single flow is also that for the stochastic
system with many flows, thus validating parameter design in the deterministic model even when realistic systems
have packet level stochastic dynamics

Stochastic stability of greedy primal-dual algorithm, a combination of utility maximization and maximum
weight matching, is shown in [94] for dynamic networks where traffic sources and routers are randomly time-
varying, interdependent, and limited by instanteneously available transmission and service rates.

Besides packet-level stochastic dynamics, there is also randomness at the application level. The paper [9]
considers its effect on the TCP layer. It shows that the utility maximization at the TCP layer induces a utility
maximization at the application layer, i.e., an objective at the application layer is implemented in the TCP layer.
Specifically, consider a single link with capacity Nc (bits) shared by N HTTP-like flows. Each flow alternates
between think times and transfer times. During the period of a think time, a flow does not require any bandwidth
from the link. Immediately after a period of think time, the source starts to transmit a random amount of data by
a TCP connection. The transfer time depends on the amount of transfer and the bandwidth allocation to this flow
by TCP. The number of active flows is random but at any time, the active flows share the link capacity according
to TCP, i.e., their throughputs maximize aggregate utility subject to capacity constraints. Assume there are a fixed
number of flow types. Then it is shown in [9] that the average throughput, i.e., the throughput aggregated over
active flows of each type normalized by the total number of flows of that type, also solves a utility maximization
problem with different utility functions as the TCP utility functions.
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4.4.3 Channel level stochastic

Models in [94, 59, 11] consider random channel fluctuations. In [11], for instance, a channel is assumed to be fixed
within a discrete time slot but changes randomly and independently across slots. Let h(t) denote the channel state
in time slot t. Corresponding to the channel state h, the capacity of link l is cl(h) when active and the feasible
rate region at the link layer is Π(h). We further assume that the channel state is a finite state process with identical
distribution q(h) in each time slot and define the mean feasible rate region as

Π = {r : r =
∑

h

q(h)r(h), r(h) ∈ Π(h)}. (117)

The joint TCP/routing/scheduling algorithm discussed in Section 3.1.4 can be directly applied with the schedu-
lable region Π in Step 2 replaced by the current feasible rate region Π(h(t)). It is proved in [11] that the prices
λ(t) form a stable Markov process, by appealing to the generalized NUM (80) with the rate region Π replaced by
the mean rate region Π:

maximize
∑

s Us(xs)
subject to xk

i ≤
∑

j:(i,j)∈L fk
ij −

∑
j:(j,i)∈L fk

ji, ∀i, j, k
∈ Π̄

(118)

Moreover the primal and dual values along the trajectory converge arbitrarily close to their optimal values, with
respect to (118), as the stepsize in the algorithm tends to zero.

For generalized NUM problems, [11] establishes the stability and optimality of dual algorithms under channel-
level stochastic for any convex optimization where the constraint set has the following structure: a subset of the
variables lie in a polytope and other variables lie in a convex set that vary according to an irreducible, finite-state
Markov chain. Algorithms developed from the deterministic NUM formulation and requiring only the knowledge
of current network state (such as channel state and queue-lengths), remain stochastically stable and optimal with
respect to an optimization problem whose constraint is replaced by the average constraint set under the given
channel variations.

4.4.4 Topology level stochastic

Topology of wireless networks can change due to mobility of nodes, sleep mode, and battery power depletion.
Solving generalized NUM problems over networks with randomly varying topology remains an under-explored
area with little known results or methodologies. The problem is particularly challenging when the topology level
stochastic dynamics is determined by battery usage, which is in turn determined by the solution of the NUM
problem itself.

4.5 Nonconvex NUM

Nonconvex problem formulation of NUM and non-zero duality gaps may arise due to a variety of reasons: inte-
ger constraints (e.g., in single path routing, admission control, scheduling, algebraic coding, constellation size),
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nonconcave utilities (e.g., power efficiency or some empirically verified utility curves), and constraints describing
nonconvex sets. A nonzero duality gap means that the standard dual-based distributed subgradient algorithm, and in
general dual decomposition approaches, may lead to suboptimal and even infeasible primal solutions and instabil-
ity in cross layer interactions. This very difficult problem can be tackled through a combination of well-established
and more recent optimization techniques (e.g., sum-of-squares programming [82] and geometric-signomial pro-
gramming [12]). For example, there have been three recent approaches to solve nonconcave utility maximization
over linear constraints:

1. [58] proposes a distributed, suboptimal heuristics (for sigmoidal utilities) called “self-regulating” method, to
be adopted by end users with sigmoidal utilities and is shown to avoid link congestion caused by sigmoidal
utilities. It attains the optimal rate allocation in the asymptotic case when the proportion of sources with
nonconcave utilities vanishes.

2. [16] determines optimality conditions for the dual-based distributed algorithm to converge globally (for
all nonlinear utilities). The engineering implication is that appropriate overprovisioning of link capacities
will ensure global convergence of the dual-based distributed algorithm even when user utility functions are
nonconcave.

3. [27] develops an efficient but centralized method to compute the global optimum (for a wide class of utilities
that can be transformed into polynomial utilities), using the sum-of-squares method to show that duality gap
can be closed by deploying polynomial, rather than constant, congestion pricing.

4.6 Network X-ities

Protocol design and layering architecture are not just for maximizing the efficiency of performance metrics, such
as throughput, latency, distortion, but also robustness metrics, such as evolvability, scalability, and manageability.
These non-performance metrics ending with “ity” are referred to as “network X-ities”. Interactions among layers
introduce the risks of losing robustness against unforseen demands arising over time or significant growth over
space. Indeed, intuition suggests that under-specification may be better than over-optimization. Optimization is
only as good a design approach as the choice on objective function, and performance-based utility function may
not always be the right objective to maximize.

Despite the importance in practical network operations, these network X-ities remain as important yet fuzzy
notions, and a quantified foundation for them is long overdue [15]. As an example, intuition suggests that “design
by decomposition” enhances scalability and evolvability, but may present risks to manageability such as diagnos-
ability and optimizability unless the decomposition structure is appropriate. As another example, we may consider
continuing the shift in protocol design mentality from “forward engineering” (solve a given problem) to “reverse
engineering” (discover the problem implicitly solved by a given protocol) further to “design for optimizability”
(design the optimization problem to be easily solvable). Quantifying network X-ities and trading-off network
X-ities with performance metrics in layered protocol stack design is a long-term, challenging direction.
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5 Conclusion

We provided a survey of the recent efforts to establish “Layering as Optimization Decomposition” as a common
“language” for systematic network design. “Layering as Optimization Decomposition” is a unifying framework for
understanding and designing distributed control and cross-layer resource allocation in wired and wireless networks.
It has been developed by various research groups over the last several years, and is now emerging to provide a
mathematically rigorous and practically relevant approach to quantify the risks and opportunities of modifying
existing layered network architecture. It shows that existing network protocols in layers 2, 3, and 4 can be reverse-
engineered as implicitly solving some optimization-theoretic or game-theoretic problems. By distributively solving
generalized NUM formulations through decomposed subproblems, we can also systematically generate layered
protocol stacks. There are many alternatives for both horizontal decomposition into disparate network elements
and vertical decomposition into functional modules (i.e., layers). While queuing delay or buffer occupancy is often
used as the “layering price”, it may sometimes lead to unstable interactions. A variety of techniques to tackle
coupling and nonconvexity issues has become available, which enables developments of distributed algorithms
and proofs of global optimality, respectively. Many of such techniques are becoming standard methods readily to
be invoked by researchers.

The two cornerstones for the intellectual simplicity in this paper are “networks as optimizers” and “layering as
decomposition”. Together they provide a promising framework to understand not just “what” works in the current
layered protocol stacks, but also “why” it works, what may not work, and what alternatives network designers
have.
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Symbol Meaning
t Time index
α Parameter of α fair utility functions
β(t) Step size at time t

β0 Constant step size
θ Weighted combination’s weights
L, l Set of links and index for links
N , s Set of sources and index for sources
cl Capacity on link l

L(s) Set of links used by source s

S(l) Set of sources traversing link l

R Routing matrix
λl Congestion price on link l

xs Source s rate
yl Link l load
Us Source s utility function
Ws Source s window size
Ts Round trip time (total delay) for source s

ds Total propagation delay for source s

qs Total queuing delay for source s

bl(t) Queue length at time t

rl Average queue length
ωl RED weighting factor
ρ1, ρ2, Ml, b̄l, bl RED parameters
αs TCP Vegas parameter
γs, γl Gain factors in FAST and AVQ
Fs,Hl, Gl General congestion control functions
fs Function mapping from source rate to total queuing delay
κs Primal congestion control algorithm’s gain
gl Function mapping from link load (and link capacity) to congestion price
L() Lagrangian
D() Dual function
c̃l Virtual capacity on link l

(z,u,v) Passivity system
V (z) Lyapunov or storage function
N j Number of sources using type j congestion control protocol
mj

l Price mapping function on link l for type j protocol

Table 4: Summary of main notation for Section 2.1.
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Symbol Meaning
Wl Backoff window size
CWl Current backoff window size
Wmax

l Maximum backoff window size
Wmin

l Minimum backoff window size
pl Persistence probability of link l

ql Conditional persistence probability of link l

pmax
l Maximum persistence probability

pmin
l Minimum persistence probability

Tl The event that link l transmits
Cl The event that the transmission by link l is collided
βl Backoff multiplier
S(p) Probability of successful transmission
F (p) Probability of failed transmission
R(pl) Reward for successful transmission
C(pl) Cost of failed transmission
K Maximum number of contending links
rl Receiving node of link l

tl Transmitting node of link l

Lout(n) Set of egress links from node n

Lin(n) Set of ingress links to node n

LI
from(n) Set of links interferred by node n

N I
to(l) Set of nodes whose transmission interfere link l

Pn Persistence probability of node n

CCL Capacity of clique

Table 5: Summary of main notation for Section 2.2.
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Symbol Meaning
Hs,H Physical connectivity matrices
Ws,W Load balancing matrices
Wn Set of load balancing matrices with single-path routing
Wm Set of load balancing matrices with multi-path routing
Rn Set of routing matrices with single-path routing
Rm Set of routing matrices with multi-path routing
rs Set of routes available to source s

Vnp Optimized primal value of TCP/IP NUM with single-path routing
Vnd Optimized dual value of TCP/IP NUM with single-path routing
Vmp Optimized primal value of TCP/IP NUM with multi-path routing
Vmd Optimized dual value of TCP/IP NUM with multi-path routing
Pj Transmit powers
mj Message generated by node j

SIRj Signal to Interference Ratio
Gij Channel gain from transmitter on link j to receiver on link i

ρs Reliability at source s

ρs(t) Offered reliability at source s at time t

ps Probability of decoding error at source s

pl,s Probability of decoding error on link l for source s

tl,s Transmission rate on link k for source s

rl,s Code rate on link l for source s

cmax
l Maximum capacity on link l

M Codeword length
El Error function mapping code rate to decoding error probability
µs Signal quality price generated by source s

cl,s Capacity on link l allocated to source s

x′s Log transformed xs

U ′
s Utility function of log transformed xs

v Parameter weighting preference between rate and reliability
κ Penalty function weight
ε, δ Message passing for joint congestion and contention control
Π Schedulability constraint
xk

i Rate for source destination pair (i, k)
fk

ij Flow on link (i, j) for destination k

wij Weighting for maximum weight matching
Ũ Utility function of subproblems

Table 6: Summary of main notation for Section 3.
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Symbol Meaning
Nr Number of active flows of type r

λr The Poission arrival rate of flow of type r

µr The mean of exponential file size in flow of type r

ρr The load of flow of type r

h Channel state

Table 7: Summary of main notation for Section 4.

From master problem
to ith subproblem

From ith subproblem
to master problem

Method 1 (primal decomp.) amount of resources yi subgrad. of Ũi (yi)
Method 2 (full dual decomp.) prices λi and γ subgrads. −fi (xi, yi) and −gi (yi)
Method 3 (partial dual decomp.) price γ subgrad. −gi (yi)

Table 8: Summary of signalling between the master problem and the subproblems of the three considered decom-
positions.

Table 9: Summary of results on flow level stochastic NUM.
utility type constraint type t.s.s stability region ref.
concave U affine yes Θo [116]
α-fair affine no Θo [60, 92]
proportional general convex yes Θo [6]
max-min general convex yes Θo [6]
balanced fair general convex yes Θo [6]
concave U general convex yes other condition [50]
concave U general convex no Θo [61]
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