
  

  

 
Abstract— Controls is increasingly central to 

technology, science, and society, yet remains the “hidden 
technology.” Our appropriate emphasis on mathematical 
rigor and practical relevance in the past 40 years has not 
been similarly balanced with technical accessibility.  The 
aim of this tutorial is to enlist the controls community in 
helping to radically rethink controls education.  In 
addition to the brief 2 hour tutorial at CDC, we will have 
a website with additional materials, but particularly 
extensive online videos with mathematical details and 
case studies.  We will also have a booth in the exhibition 
area at CDC with live demos and engaging competitions 
throughout the conference. 

OVERVIEW 

What follows are some short papers that briefly sketch the 
motivation, striking progress, and substantial remaining 
challenges in making control theory much more accessible 
to broader audiences.  This involves both broadening the 
scope of the theory, but also simplifying the math required 
to a remarkable extent.  The “high school” in the title is 
untested and is really a stretch goal but is not entirely 
facetious, as we will show that many of the core concepts in 
controls can be introduced and key theorems proven using 
only high school algebra.  This makes it possible to 
accessibly explain the basics about the power and danger of 
control in uncertain dynamical systems, and the difficulties 
due to plant instability, actuator saturation, and unstable zero 
dynamics.  Including delay and quantization in 
communication and computation directly greatly broadens 
the relevance of the theory and make the proofs longer and 
more tedious but (again remarkably) not fundamentally 
more advanced.   
 
Neuroscience provides particularly attractive motivating 
case studies, as almost everyone is interested in how brains 
work.  Surprisingly, experimental demos and theories that 
significantly push the state of neuroscience research can be 
reproduced by audiences and readers with little or no 
equipment, and quite sophisticated case studies can be done 
using video games requiring minimal and commodity 
hardware. While this tutorial will focus on neuro motivation, 
there are many other domains with equally attractive case 
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studies, and particularly modern commodity robotics and toy 
(e.g. Lego) hardware and software. 
 
As familiar example, imagine riding a mountain bike down a 
twisting rocky trail.  Vision is used to see the trail ahead, 
and this advanced warning is used to plan a route that stays 
on the trail. Even large variations (disturbances) in the trail 
can be navigated with small error provided there is enough 
advanced warning relative to speed.  As a more extreme 
example, we can easily thread a needle on a different 
continent given enough time and money.  But the bumps in 
the trail are handled by a reflex layer that has necessarily 
delayed reactions, which can easily result in catastrophically 
large errors and crashes to even small disturbances. These 
reflexes are in addition to the vestibular-ocular reflex (VOR) 
which is stabilizing vision despite the bumps. Usually, we 
readily multiplex the planning control with both (and many 
other) reflexes with no loss in performance, despite being 
terrible multitaskers in general. 
 
Thus with enough advanced warning and resources we can 
be almost infinitely robust, and at the opposite extreme, 
infinitely fragile.  Our nervous system has a layered control 
architecture that allows us to typically exploit the former and 
avoid the latter. These tradeoffs are not unique to 
sensorimotor control or even the nervous system.  Due to a 
vaccine, which exploits the advanced warning capability of 
the immune system, there have been no smallpox deaths 
since 1980. In contrast, before the vaccine, smallpox 
infections caused roughly 400 million deaths worldwide 
from 1900-1980.  For these universal tradeoffs and layered 
architectures, we need a correspondingly universal 
theoretical framework. 
 
The papers that follow sketch some key ideas on how to 
make control theory more motivated and accessible, but with 
a CDC audience in mind.  Thus we will skip lots of basic, 
elementary background necessary for a “high school” 
audience that would overwhelm the available space and 
focus on the results we think are most educationally 
innovative.  We also have lots of obvious (and possibly not 
obvious) holes throughout that we hope you will help us 
with.  
 
We will have an exhibition booth at CDC with live demos 
and competitions using video games that illustrate 
fundamental tradeoffs in sensorimotor control, and a website 
with lots of videos and other tutorial materials. 
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Teaching Controls: Neuroscience Motivation

Yorie Nakahira, Yoke Peng Leong, Nikolai Matni, John Doyle

Abstract— Neuroscience potentially provides excellent mo-
tivation for not only control theory but also its integration
with computing, communications, and biophysics, and allows
for simple but illustrative case studies and demos that can be
easily reproduced and understood by readers and audiences
with diverse backgrounds. The human nervous system is
remarkably robust and efficient in both sensorimotor control
and maintaining physiological homeostasis, yet also can have
devastating fragilities. While enormous progress is being made
in understanding both the components and the total system
behavior, less progress has been made in connecting these, and
one of our objectives is to close this gap, while keeping the
needed mathematics as elementary and accessible as possible.
This paper focuses on sensorimotor control to motivate specific
theory that will be developed further in later papers in this
series.

I. INTRODUCTION

Human nervous system behavior is remarkably robust
in both sensorimotor control and maintaining physiological
homeostasis despite hardware that is extraordinarily efficient
and flexible but slow and inaccurate, at least by modern engi-
neering standards. Recent progress in research is increasingly
elucidating these hardware speed, accuracy, and efficiency
tradeoffs in familiar engineering terms [1]. At the behavioral
level, a similar idea is emerging that humans are better
described by robust control than optimal control [2]. While
these views appear very compatible, what has been missing
is rigorous theory to connect component level constraints
and tradeoffs with those at the system level. In retrospect,
it is now clear that the right blend of robust and network
control theory can close this gap, and do so with remarkably
accessible math, at least initially.

Specifically, we focus on examples with extremes of robust
and fragile behavior, identify equally extreme heterogeneity
in nerve composition, motivate the theory that connects them,
and throughout present case studies and demos that can be
easily reproduced by the reader with minimal and readily
available equipment. The papers that follow this one then
explore various details in the theory and experiments.

A. Background in neuroscience

Sensorimotor control. Human sensorimotor control con-
sists of sensors, computation and communication compo-
nents, and actuators, in which a movement is realized by
layers of feedback loops. Its decision principles – such as
why the movement follows a particular trajectory out of
many other choices – has been one of the major concerns
in the sensorimotor control community. Although robust
control has been used to explain the result of particular
motion experiments, little is known about how the hardware

limitations reflect on the fundamental limitations of sen-
sorimotor performance nor the strategies achieving optimal
performance given the hardware constraints.

Nervous system. A minimal but convenient starting point is
to view the central nervous system (CNS) as a collection of
bundles of neurons doing computations and communications,
where the computation is done by grey matter bundles and
the communication by white matter bundles. There are up
to millions of axons (see Fig. 1) in white matter bundles,
each of which transmits from one neuron to possibly many
thousands of receiving neurons. The nerves in CNS are also
connected to sensors and actuators in the peripheral nervous
system.

Neurons generate action potentials, which are short-lasting
events in which the electrical membrane potential of a cell
rapidly rises, falls, and propagates down an axon to the
receiving neurons (via synapses and dendrites). What we
will focus on is that spikes in nerves can have temporal
(across time) and/or spatial (across axons in the same nerve)
dimensions that contain information (such as spiking rate,
timing, or combinations of them). However, this neural
signaling is limited in both speed and accuracy, and there
exists a tradeoff between speed and accuracy in signaling.
The latencies are mainly due to conduction delays (the time
taken for the action potential to transmit down the axon),
refractory period (the time a cell takes to reset to its initial
state after firing an action potential), and integration and
synaptic delays (such as synapses between nerves, or in the
computation procedures of the soma). Limited accuracy is
due to having finite numbers of axons with a finite rate
of action potentials per axon (because of energy constraint,
refractory period, and so on).

While there is much remaining to be done to understand
exactly how the nervous system uses action potentials to
communicate for control, and the tradeoffs between effi-

Fig. 1. Nerves are composed of bundles of fibers (called axons) which
produce action potentials to transmit information. Given fixed lengths the
metabolic cost to build and maintain a nerve is roughly proportional to it
cross sectional area.



ciency, speed, and accuracy, enough is known to make simple
models and compare them with known anatomy and behav-
ior, which are extremely heterogeneous in all dimensions.
Such extremes are suggestive of severe constraints and evo-
lutionary pressures, whether they arise from natural selection
or engineering design, and thus cry out for a coherent theory,
hopefully one consistent with neuroscientists’ intuitions. This
is what we aim to provide.

B. Why L1/`∞ robust control

This collection of papers focuses on controllers that mini-
mize the worst-case `∞ → `∞ gains of a system, resulting in
`1 robust control problems [3]. Robust and optimal control
has increasingly been dominated by frequency domain met-
rics that quantify bounds on energy, either worst-case (H∞)
or average-case (H2). While this is very natural in many
traditional engineering applications, and leverages engineers’
frequency-domain intuitions, we will argue that in the context
of sensorimotor control, cell biology, and many other new
application areas of interest, this is a less natural space of
signals. A dramatic example is a mountain-biker riding down
a steep rocky trail. The average or worst-case energy transfer
to the rider’s position caused by bumps is less important
than staying on the trail and not crashing, which is more
naturally modeled as `∞ → `∞. Indeed, most biological
control is more naturally posed in `∞ than `2. A further
reason to study problems with `∞ bounded signals is that
they more naturally and easily allow for quantization and
saturation to be incorporated into the control problem, both
nonlinear phenomena that are ubiquitous in biological and
engineered systems. In fact, as we show in this paper, special
instances of such problems even allow for analytic closed
form solutions. Finally, to most non-engineers the frequency
domain is more obstacle than enabler, at least initially.

II. EXPLAINING HETEROGENEITY

A. Performance heterogeneity

Human sensorimotor control has very heterogeneous per-
formance, which can be observed using a simple experiment
(though better demos are available on our website). First,
place your hand in front of your face, close enough to clearly
see the fine details of the lines in your palm. Then, perform
the following movements:
(i) Oscillate your hand horizontally back and forth, increas-

ing the frequency until the lines blur.
(ii) Hold your hand still and shake your head (in a “no”

pattern) at increasing frequencies until blurring occurs.
The blur is either caused by delays in tracking or limitations
in visual resolution. The blurring in experiment (i) typically
occurs at around 1-2 Hertz whereas in experiment (ii) at
a much higher frequency, illustrating the heterogeneous
performance (in the level of tolerable disturbance) for the
control loops that are responsible during (i) or (ii).

It is essential that the visual system is able to coordinate
control of the eye muscles when tracking a moving object in
the presence of head motion, and in humans (particularly as
hunter-gatherers or athletes) the latter generally creates much
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integrated layered control.

Fig. 2. Heterogeneity in the vision/VOR system.

higher rates, and thus needs much faster control. There are
thus two separate but coordinated feedback control loops that
implement this process: compensation of the head motion
and tracking of the object motion. Head motion is compen-
sated for via the fast vestibulo-ocular reflex (VOR), whereas
the object is tracked via slow cortical visual feedback. These
are two separate processes, and their gains are tuned to
match with each other using neural mechanisms involving
the cerebellum, vestibular nuclei, and the accessory optical
system (AOS).

The tradeoffs and mechanisms involved in the vision/VOR
system are sketched in the cartoons in Fig. 2. Head motion
disturbances are controlled with the VOR, which connects
quite directly to the eye muscles and has a delay of approx-
imately 10ms, making it one of the fastest reflexes in the
human body. This VOR does not depend on vision, and eyes
will track despite head motion even when the eyes are closed,
though this is harder to verify. Object motion is tracked using
vision with the same eye muscle actuators as VOR but is
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Fig. 3. Extremes in sensorimotor control between delayed reflexes and
advanced planning.

slow (> 200ms delay), due mostly to long nerve paths and
cortical computation. Vision however is both accurate and
flexible (e.g. you are reading these words) whereas VOR is
neither.

Control experts will immediately recognize that the gains
on these two systems (the arrows labeled fast and slow
entering the common eye muscle actuators) must precisely
match, despite huge uncertainties in all the components, and
thus will not be surprised that there is a another loop to finely
tune these gains. This is implemented in the vestibular nuclei
and tuned by the vestibulo-cerebellum using the auxiliary
optical system (AOS), a specialized pathway in the vision
system. The time scales of tuning can be from hours to days
depending on the extent of the detuning perturbation (e.g. by
wearing prism glasses that distort the visual system).

This example illustrates universal features of the nervous
systems that we will explore in more detail. Fast and accurate
(and flexible) visual performance is achieved with parts that
are either fast or accurate but not both. (As we will see,
neural hardware that is both fast and accurate would be
prohibitively expensive.) Yet most people remain unaware
of this unless they perform the above experiment or have
some condition that degrades the VOR (e.g. alcohol). The
architecture of this system provides fast accurate behav-
ior in normal conditions with mechanisms that are largely
unconscious and automatic. The control system is layered
in largely independent vision and reflex layer controllers,
though learning and tuning is needed to coordinate them,
and it is crucial that each functionality is implemented in
the right layer.

Again imagine riding a mountain bike down a twisting
rocky trail. As shown in the cartoon in Fig. 3, here too there
are vision and reflex layers. Vision is used to see the trail
ahead, and this advanced warning is used to plan a route
that stays on the trail. Even large variations (disturbances)
in the trail can be navigated with small error provided there
is enough advanced warning relative to speed. But the bumps
in the trail are handled by a reflex layer that has necessarily
delayed reactions, in which even small disturbances can
easily result in catastrophically large errors and crashes.
These reflexes are in addition to the VOR which is stabilizing
vision despite the bumps.

Thus with enough advanced warning and resources we
can be almost infinitely robust, and at the opposite extreme,
almost infinitely fragile. Our nervous system architecture
allows us to typically exploit the former and avoid the latter.
These tradeoffs are not unique to sensorimotor control or
even the nervous system. As an extreme example of the
RHS of Fig.3, we can easily thread a needle on a different
continent given enough time and money, but can die due
to exposure to tiny amounts of toxins. Due to a vaccine,
which also puts the immune system on the RHS of Fig.3,
there have been no smallpox deaths since 1980. In contrast,
before the vaccine, smallpox infections are on the LHS
and caused roughly 400 million deaths from 1900-1980.
For these universal tradeoffs and architectures, we need a
correspondingly universal theoretical framework.

B. Axon heterogeneity

The VOR and cortical feedback have heterogeneous per-
formances and delays, due to the signaling delay of the
vestibular nerve (in VOR feedback) or optic nerve (plus
cortical delays in vision). The propagation speed of an action
potential in a myelinated axon is approximately proportional
to its radius, so the difference in mean diameter of vestibular
and optic nerve axons (2.88µm and 0.64µm) means the
vestibular nerve is on average faster than the optic nerve.
This delay and size heterogeneity can be observed also in
other types of nerves, and additionally, the heterogeneity can
be observed also in the number of axons.

The heterogeneity in size and number of axons is sum-
marized in Fig. 4a for several well-studied nerves. These
nerves have axons with extreme variance in size and number:
peripheral nerves can have a single large axon (greater than
20µ in diameter); olfactory nerves have 6 million small axons
(approximately ≈ .1µ in diameter and unmyelinated). Other
cranial and spinal nerves, including the optic and vestibular,
vary in between. Later we will translate Fig. 4a into a tradeoff
between speed and accuracy in axonal signaling (Fig. 4c)
because propagation speed is proportional to axon diameter,
signaling bandwidth is proportional to the number of axons,
and the spike rate is proportional to axon diameter. These can
be combined to derive a simple model of bandwidth/delay
tradeoffs that can be plugged into the theory developed in
the next section.

C. Relevant theory

In this section, we develop a control theory specifically
to model the sensorimotor system. The model then explains
why the observed performance heterogeneity is necessary
given the hardware constraints, and why the observed axon
heterogeneities are beneficial.

Consider the human sensorimotor system composed of
sensors (eyes, inner ear), communication components (cra-
nial and spinal nerves of the CNS), controllers (also in the
CNS), and actuators (muscle/limb). The sensors use nerve
fibers to transmit information to the CNS. The CNS utilizes
sensory information to decide the control action and sends
it to the muscle. The muscle executes the control action
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upon receiving the CNS’s command. Of course, in reality
this is almost bewilderingly complex and distributed, and
a cartoon like Fig. 2a would have delays and bandwidth
limits in every box and connection. The simplest possible
centralized version with just one of everything is

P : x(t+ 1) = ax(t) + w(t− Tw) +R [u(t− Tu)]
C : u(t) = K(x(0 : t), w(0 : t), u(0 : t− 1)) (1)

where x(t) ∈ R is a scalar state measuring deviations
between desired and actual limb or muscle (or bike) state,
w(t) ∈ R is a disturbance, and u(t) ∈ R is a scalar control
action aimed to modify the actual limb/muscle state. We use

P to denote the “plant,” which describes the dynamic inter-
action between muscle/limb state, disturbances and control
action, and C to denote the “controller,” which computes
control actions to be applied given the state, disturbance and
control action histories.

There are four other parameters of note in dynamics (1).
• a delay Tu ≥ 0 in the control loop that determines how

quickly computed control actions affect the state of the
system via actuators;

• a delay Tw ≥ 0 on the disturbance that allows w(t) to
be used in computing control actions prior to its effects
being felt on the plant indicating that the system has
advanced warning or preview control.

• the full information controller map K, which uses the
state, disturbance and control input histories to compute
a suitable control action to be applied;

• a quantizer R : R → {0, 1}R that restricts the control
action to be drawn from a finite set of values of cardi-
nality 2R per unit time (we denote R as bandwidth).

It is the interplay between these parameters that allows
us to connect this simple control theoretic model with the
neurophysiology and sensorimotor behavior described in the
previous section. Roughly speaking, the disturbance delay
Tw is determined by environmental and sensory factors (e.g.,
am I using vision to detect a moving target, or touch to detect
a bump on a trail), and the control delay Tu and the number
of bits R of the quantizer R are determined by neuronal
hardware (and as we show below, are constrained to satisfy
a speed/resolution tradeoff).

We temporarily set the neuro-interpretation of this problem
aside and consider the following robust control problem

minK,R max‖w‖∞≤1 ‖x‖∞
s.t. dynamics (1).

We define the net warning (delay) from the disturbance to
the control action as

τ := Tw − Tu.

We can use this net warning(delay) to distinguish between
two qualitatively different settings:

1) delayed reaction: when τ < 0 control actions taken
based on the disturbance w(t) only affect the plant
after the effects of w(t) have been felt;

2) advanced warning: when τ ≥ 0 control actions taken
based on the disturbance w(t) can reach the plant
before the effects of w(t) have been felt.

These two regimes lead to qualitatively different optimal
costs: {∑|τ |

i=1 |ai−1|+ |a|τ ||
(
2R − |a|

)−1
if τ < 0(

2R − |a|
)−1

if τ ≥ 0.
(2)

We can interpret these costs as follows. When in the
advanced warning regime (τ ≥ 0), the cost incurred is due
solely to quantization error, and reduces to the rate-distortion
like expression (

2R − |a|
)−1

(3)



For the delayed reaction setting, we see that the cost is
the sum of two (essentially independent) components. The
first term,

|τ |∑
i=1

|ai−1|, (4)

is simply the L1-norm of open loop impulse response of the
system over the horizon of the net delay |τ | – in particular,
if the net-delay is set to 0, then this term vanishes. The
second term is given by the same quantization error (3) as
the advanced warning case, but scaled by |a|τ || to capture
the effects of the delay τ < 0. Notice here that if we let the
number of bits R → ∞, then the total cost incurred in this
regime reduces to (4).

To study sensorimotor control in detail, this model will
need to be vastly more complex, including multiple distur-
bances and actuators, and layered, distributed communica-
tions and control, but we will add features incrementally
and seek insight from the simplest possible models. Next,
we consider how implementation in spiking neurons puts
constraints on the optimal performance of the system.

D. Designing optimal nerves

Here, we develop a connection between a component
level model of nerves in the CNS and overall sensorimotor
behavior. In order to do so, we assume that the control action
delay Tu can be expressed as the sum

Tu = T + Tc,

where the signaling delay T is the focus of our nerve design
(see below), and there is some additional delay Tc (which
can model communication or computation delay in other
parts of the system) which we will assume is fixed. Slightly
overloading (but simplifying) notation, we define the fixed
net warning of the system to be

τ := Tw − Tc,

as this is an inherent feature of the system, regardless of the
chosen signaling delay T .

Our remaining task is thus to quantify the speed/accuracy
tradeoff that arises when building a nerve of fixed metabolic
resources so that we can select appropriate values for the
signaling delay T and number of bits R used by our
sensorimotor controller in (1). The metabolic cost to build
and maintain a nerve is roughly proportional to its volume
[1], and we assume that the overall physical layout of white
and grey matter is fixed. Hence we’ll assume the lengths
of nerves are also fixed, and thus the resources (space and
energy) devoted to a nerve are proportional to the cross-
sectional area α of it (Fig. 1).

If each nerve is composed of m axons with average radius
ρ, then the space used by nerves is proportional to πmρ2 —
the sum of cross-sectional area of m axons. The propagation
speed (∝ 1

T ) and firing rate φ of an action potential in a
myelinated axon is known to be approximately proportional
to its radius ρ, i.e., φ ∝ ρ and T ∝ ρ−1 [1]. Thus, the
resource cost satisfies the relation α ∝ πmρ2. If we assume

that the nerve is a lossless communication channel (e.g.
codeword ‘1’ is the presence of an action potential, 0’ the
absence, and no bit flips occur) then it can transmit R = mφ
bits per unit time, where φ is the maximum firing rate. The
assumption of lossless signaling is legitimate for myelanated
axons with large diameter (the ones on the right half of Fig.
4a). Combining these dependencies we see that R ∝ αT ,
which defines the following tradeoff between signaling speed
and accuracy:

R = λT, (5)

where λ ∝ α is a proportionality constant determined by the
resource consumption of the nerve (Fig. 1). Going forward
we fix the axon diameter α, and hence write R = λT . As
we now show, this tradeoff is the key needed to connect
component level constraints with system level behavior via
our control theoretic results (2).

In particular, if we substitute R = λT into (2), we
obtain an expression that quantifies the impact of the nerve
speed/accuracy tradeoff on system performance. For the
special case a = 1 the optimal cost for both the delayed
reaction and advanced warning settings can be succinctly
written as

max [0, T − τ ] + (2λT − 1)−1. (6)

Once again, this cost can be decomposed into a delay term
max [0, T − τ ] (which only contributes to the cost if the
signaling delay T is larger than the fixed net warning τ ),
and a quantization term (2λT − 1)−1.

Fig. 5 shows how the optimal cost varies as we sweep
across different values of the signaling delay T (and thus
bandwidth R), for the fixed net warning τ = 0 and a
fixed proportionality constant λ. As expression (6) makes
clear, increasing the signaling delay T incurs a corresponding
linear penalty in the delay term, but leads to an exponential
decrease in the quantization term. This quantifies the familiar
notion that bits are powerful. Consequently, the optimal
choice of axon size (as parameterized by the signaling delay
T ) is achieved at a sweet spot of intermediate levels of
delay and bandwidth. This contrasts dramatically with what
is suggested by information theory, which has dominated
theoretical neuroscience [4], and emphasizes maximizing
bandwidth without consideration of delay.

The remaining results do not depend crucially on any of
the details of this model, and certainly not that R = λT ,
but only that there is some monotonic tradeoff between
R and T . This is the simplest possible starting point but
more complex models including, say, bit losses and complex
coding schemes, can be included at the cost of greater control
complexity.

E. Delayed reaction versus advanced warning

We now revisit the delayed reaction and advanced warning
regimes in light of the previous discussion and the derived
speed/accuracy tradeoff. Fig. 6a shows the signaling delay
T , the resulting total delay T − τ , and the corresponding
bandwidth R = λT that achieve the minimum total error as
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we vary the net delay τ . Two distinct regimes with distinct
physiology clearly result—these are conceptually consistent
with the two qualitative regimes observed for expression (2).

(i) Delayed reaction: Here we assume that the fixed net
warning satisfies τ < 0. In this regime, Fig. 6a shows that
the delay term increasingly dominates the total cost. Further
this total cost can be much larger than the disturbance, and
goes to infinity as delay increases or instability of the system
increases (e.g., a small bump on a trail can cause a bike
to flip over). Since the contributions due to the delay term
dominate the overall cost, the optimal nerve size is the one
that sacrifices bandwidth in order to minimize delay.

(ii) Advanced warning: As we increase the delay of the
disturbance Tw, we eventually enter the fixed net warning
τ ≥ 0 regime. In this regime, Fig. 6a shows that the
quantization term increasingly dominates the total cost. Fur-
ther, this total cost can be made to approach zero if we
allow R to grow large. This further incurs no delay term
penalty if we assume that our fixed net advanced warning τ
grows correspondingly large (e.g., I can thread a needle in a
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Fig. 6. Delayed vs warned system

different country given enough time). Since the contributions
due to the quantization term dominate the overall cost,
the optimal nerve is the one that maximizes bandwidth by
(approximately) matching the signaling delay T to the fixed
net advanced warning τ of the system.

This model at least qualitatively matches both the cartoon
in Fig. 3 and the empirical data on nerves in Fig. 4b.
Delayed reaction control will be implemented in nerves with
low delay and bandwidth (e.g. sciatic and vestibular), and
advanced warning will be implemented in nerves with high
bandwidth and delay (e.g. optic and olfactory). In humans,
less resources are devoted to olfaction than vision.

F. A simple layered model

Sensorimotor control must deal with a huge range of
physical and temporal scales, and does so by combining ex-
tremely heterogeneous components in layered and distributed
control architectures. We will next model a minimal combi-
nation of advance warning and delayed reactions to study
their interactions. As a starting point in a task like mountain
bike riding, we abstract and simplify the layered sensorimo-
tor system into two major feedback control loops shown in
Fig. 7a: a planning loop that determines a movement path to



follow a trail r using vision with advance warning τ , and a
reflex loop that provides corrections against disturbances w
from bumps for bike balance. (Multiple reflexes, including
VOR for vision, will be present in reality but we will just
consider a single reflex system for simplicity.) Initially we
will assume that both loops act in common via a motor
nerve with bandwidth R and delay T < τ , and we apply
the relevant theory from Section II-C, ultimately aiming
to explain why the observed axon delay heterogeneity is
beneficial.

To do so, we modify the dynamics (1) to reflect the diver-
sity of the disturbances that affect bike (or eye movement)
as illustrated in Fig. 7a). The resulting dynamics are given
by

x(t+ 1) = ax(t) +R[u(t− T )] + v(t)

v(t) = w(t) + r(t− τ) (7)
u(t) = L(x(0 : t), w(0 : t))) +H(x(0 : t), w(0 : t))

where now the scalar state x(t) is the error between the
desired and actual trajectory. Further, the disturbance v(t) is
now composed of two terms: (i) a component r(t−τ) that is
the trail observed with advance warning and (ii) a component
w(t) due to bumps in the trail or head motion. Notice that
the object position r(t− τ) affects the error with a positive
delay of τ , which is a simple model of our vision system’s
ability to see objects at a distance, thus providing us with
advanced warning.

The control action u(t) is generated by two nominally
independent feedback loops, each having their own sensors,
and computation and communication components. For sim-
plicity we will initially assume they act through a common
motor nerve pathway with bandwidth R and delay T . We
initially ignore other bandwidth and delay limits, which
occur in every component. We assume that the change in
object or trail position is bounded by ‖r‖∞ ≤ 1 and bumps
or head motion by ‖w‖∞ ≤ δ (typically δ � 1, but these
constants are chosen out of convenience, and without loss
of generality). The worst-case performance of the visual
tracking system can then be quantified via the optimal cost
to the following robust control problem:

minimize
H,L

sup
‖w‖∞≤δ,‖r‖∞≤1

‖x‖∞ (8)

A simple extension of the theory developed in Section II-C
leads to the following optimal cost (Fig 7b):{

T∑
i=1

|ai−1|+ |aT |
(
2R − |a|

)−1}
δ +

(
2R − |a|

)−1
.

The constraint R = λT can then be added immediately.
Intuitively, this result follows from the decomposition of
problem (8) into two independent sub-problems, one for
each of the feedback loops involving H and L. A later
paper in this collection discusses an experimental platform
that implements planning and bumps in a video game with
force feedback steering wheels and that confirms at least
qualitatively that these formulas hold.
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nerve channel.
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delayed reflex system (left) and warned system (right).

Fig. 7. The layered model

Fig 8 is similar but focuses on separate nerves connecting
sensors of r to H versus w (and x) to L, and is arguably
more directly related to the vision/VOR system. The resulting
formulas still decompose as in Fig 7a with only slightly more
complex expressions. Obviously a further combination of
Figs 7a and 8 would be even more realistic but the formulas
become complex while giving little insight.

G. Optimal resource allocation

The VOR system is a classic delayed reflex system
whereas vision is human’s preferred sensor for advanced
planning. By comparing the two feedback loops in the
visual system with the theory shown in Figs. 5 -8, we can
observe why the axon heterogeneity is beneficial. We have
deliberately kept each of these figures simple so that the
consequences can be easily interpreted, but they must now
be used in concert.

(i) The VOR system: The feedback loop via vestibular
nerve and inner ear sensors attempt to cancel the head
motion. Because our head motion can only be detected only
after the motion occurs, we can assume Tw ≈ 0 and consider
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Fig. 8. Planning and reflex control with separate nerves connecting sensors
of r to H versus w (and x) to L, .

it as a delayed system. From Section II-E, the delayed system
achieves better performance for small signaling delay T ,
which is obtained by a few large and fast axons. This is
also true of the sciatic nerve involved in reflexes in balance
of the body.

(ii) The visual system: The feedback loop via optic nerve
and the brain attempt to steer the eye toward relatively slow
moving and distant objects, or trails and obstacles in the
biking example, whose remote location allows for advanced
planning and we can assume τ > 0 and consider it as
a warned system. From Section II-E, the warned system
achieves better performance for large bandwidth, which is
obtained by many small and slow axons.

This phenomena can be indeed observed in the real
visual systems (Fig.4a). Specifically, the optic nerve has
approximately 1M axons of mean diameter 0.64µm with
CV 0.46µm, while the 20K vestibular axons have mean
diameter 2.88µm with CV 0.41, significantly larger and less
numerous and slightly less variable. Note also that vision and
VOR work so well together that we are normally unaware
of the complex control system involved. Thus every aspect
we have considered about VOR/vision fits our theory, at least
qualitatively. To get a more quantitative test we will describe
in a later paper a computer game aimed to mimic bumpy
trail riding, and preliminary data taken from a prototype has
a strikingly good fit to the theory.

H. Summary

The sensorimotor control are implemented via the nervous
system which is limited by signaling speed and accuracy.
In order to mitigate the deleterious effect of the delay and
quantization, the sensorimotor control is implemented using
layers of feedback loops, each with different optimal delay
and bandwidth given the resource constraint. This explains
why we observe different performance for similar task using
different feedback loops, and why the sensory nerves are
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Fig. 9. The control of eye motion includes vision, the vestibular-ocular
reflex (VOR), and the auxiliary optical system (AOS), but connects with
several other systems. See text for explanation.

built to have size and number heterogeneity.
The vision/VOR system has some fascinating connections

with the rest of the nervous system, as illustrated in Figure
9. While many details are unresolved, the connection with
proprioception and balance is not surprising. An interesting
experiment is to limit vision and proprioception by closing
both eyes and balancing on one leg, which highlights the
relative inaccuracy of the VOR system. Less obvious is
the connection of the VOR tuning to mechanisms involved
in motion sickness. The conventional wisdom is that the
VOR tuning system is an exquisite sensor for poisons, and
thus serves as an early warning system, and is connected
with mechanisms to induce vomiting to expel poisons. This
system is confused by modern technologies that create VOR
tuning confusion, leading to motion sickness.

III. STICK BALANCING

Balancing a stick on a person’s hand is a popular case
study in the sensorimotor control literature [5], [6], [7], but
it also offers an attractive experiment to illustrate the theory
we’ve shown here, and motivate some additional results,
particularly regarding unstable zeros. Stick balancing can
also be modeled as an inverted pendulum on a moving cart,
which is familiar to engineers and scientists [8], [9]. Here
we would like to use this model to illustrate a few interesting
concepts in robust control theory that will shed some lights
on the origin of oscillations in unstable system. A more
complete discussions on robust control theory using the stick
balancing as a case study is available at [10], which focuses
on frequency domain analysis.

In this paper, we will consider an even more simplified
stick balancing model. We understand that ordinary differ-
ential equations is not taught in high school, but this is the
simplest model we have to explain important concepts related
to robust control theory and most importantly, the waterbed
effect. In fact, because stick balancing is very easy to do



using a standard extendable pointer, a lot of the theoretical
results can be easily verified by the readers at home or office.

A. A Very Simple Balancing Model

Consider a very simple model of human stick balancing
(see Fig. 10) where we assume that the stick mass is a
lot smaller than the mass of the human balancing the stick
and acceleration input. Then, the dynamics of the stick is
characterized by

ẍ(t) = u(t)

ẍ(t) cos θ(t) + lθ̈(t) + g sin θ(t) = 0

z(t) = x(t) + l0 sin θ(t) y(t) = z(t) + n(t) (9)

where x is the horizontal displacement of the hand, θ is
the pendulum tilt angle from the vertical, u is the control
input assumed to be the hand acceleration, y is the position
measurement using the eye of z, the position of interest,
n is sensor noise, g is the gravitational acceleration, l0 is
the fixation point, and l is the effective stick length (to the
center of mass). Sensorimotor control delay due to signal
transmissions and processing is represented as τ whereby
visual processing is the major contributor [11], [12], [13].
(Note that vision and muscle motions are more quantized
than noise, so a blend of this model with methods in this
paper would be ideal, and will be explored in detail in future
work.)

This model can be linearized and simplified into a linear
dynamical system

ẍ(t) = u(t) ẍ(t) + lθ̈(t) + gθ(t) = 0

z(t) = x(t) + l0θ(t) y(t) = z(t) + n(t) (10)

where the pole and zero of the system is given in Table I.
The pole quantifies the (in)stability of the system, and it

is related to the length of the stick. On the other hand, the
zero quantifies the stability of the system when the output z
is held at zero, and it is related to the fixation location l0.

B. What We Learn From This

This case study illustrates a remarkably rich set of ideas
in robust control theory that can easily be demoed with a
standard extendable pointer and also easily related to the
theory developed here:

eye vision
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Fig. 10. A schematic of balancing an inverted pendulum on one’s palm.

1) Balancing a short stick is hard: A shorter stick has
larger unstable pole, and large unstable pole makes a system
less robust and hard to control, especially with delays.

2) Low fixation point makes it hard to balance: A fixation
point below the center of mass of a stick introduces an
unstable zero into the system reducing the system robustness
and causing the stick to become harder to balance. Peripheral
vision must be occluded (e.g. by a cap or the other hand)
to be sure that the measurement point is where the eye is
looking.

3) Delay hurts system performance: Delay prevents a
system from responding to disturbances quickly. As a result,
the system becomes less robust to disturbances. This effect
is exacerbated further if the system is unstable.

4) Waterbed effects are fundamental to system design, and
oscillations are unavoidable as a result: As the closed loop
system goes unstable, particularly for short sticks, the angle
oscillates. This is a classic example of a waterbed effect
and the oscillations can be reduced somewhat if the hand is
allowed to slowly drift rather than have small steady state
error. But as the length is shortened the oscillations become
unavoidably larger until the stick crashes. The waterbed
effect will be discussed more in detail in a later paper in
this series.

5) The oscillations are stronger and crashes more frequent
in the sagittal or lateral plane: The simple model above
has one spatial direction whereas reality has three, but 3d
models approximately decouple into 1d models, but the two
main horizontal directions (vertical is less interesting) have
different errors. The direction that the eye looks in has much
larger errors because stereopsis is needed to determine range
to the pointer, and this adds delay and additional quantization
error.

6) It is difficult to balance a stick with one eye closed:
With the loss of stereopsis, balancing becomes nearly im-
possible, unless the stick is held up so that the one eye can
see underneath the tip, and see both directions of horizontal
motion.

7) Unlike planning and reflex, stick balancing multiplexes
poorly: Most biological processes are unstable, but are stabi-
lized with automatic and unconscious reflex and homeostatic
control that multiplex perfectly. Here we are using vision
to stabilize, which is convenient, and highlights the above
features of the theory, but is not the natural use of vision.
So balancing two sticks simultaneously in different hands is

Positions Poles Zeros

Upright ±i
√

g
l0−l

if l0 > l

0, ±
√

g
l

none if l0 = l

±
√

g
l−l0

if l0 < l

Downward ±
√

g
l0−l

if l0 > l

0,±i
√

g
l

none if l0 = l

±i
√

g
l−l0

if l0 < l

TABLE I
POLES AND ZEROS OF 9.



possible, but it is very fragile and crashes at relatively long
stick lengths. Running while balancing a short stick is nearly
impossible.
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Balance, Oscillations, and Waterbed Effects

Yoke Peng Leong, John C. Doyle

Abstract— Various waterbed effects are well known in the
control community as a phenomena due to the conservation
laws such as Bode’s integral formula. This effect prevents
a closed-loop system from having minimal oscillations at all
frequencies without fundamentally changing the system design.
This paper introduce a new formulation of the waterbed
effect in the time domain that shows that good steady state
disturbance rejection aggravates oscillations at higher frequen-
cies. The result applies to all forms of single-input-single-
output linear time invariant systems regardless of stability, state
dimensions, and time continuity. Nonetheless, the derivation is
simple and intuitive, and therefore, accessible to audiences who
are not experts in control. Most importantly, we argue that
oscillations commonly observed in many natural systems is the
manifestation of the waterbed effect.

I. INTRODUCTION

Traditionally, the waterbed effect refers to the inevitable
effect on closed-loop system performance due to the conser-
vation of Bode’s integral [1]. Because the Bode’s integral
is conserved, the waterbed effect prevents a closed-loop
system from having small or no oscillations at all frequencies
without fundamentally changing the system design. In other
words, if the closed-loop system performance is enhanced
for a specific frequency range, then the closed-loop system
performances at other frequency range will necessarily de-
grade.

In this paper, a more general form of waterbed effect is
introduced via a time domain derivation and L1 norm. We
show that an improved closed-loop system performance for
a type of disturbances will degrade the closed-loop system
performance for other disturbances. This result is interesting
for a few reasons. First, this result applies to any single-
input-single-output linear time invariant system independent
of stability, state dimensions, and time continuity. The only
assumption is that the closed-loop impulse response of the
system is positive for as long as the delay. This assump-
tion simplifies the derivation, and we believe that it could
potentially be removed in future iterations of this work.
Second, in contrast to frequency domain analysis, derivations
in time domain is more intuitive to the general audiences, and
the math involved is a lot more accessible. Therefore, the
derivation and the result are more friendly to people who do
not have any advanced math backgrounds such as complex
analysis. Lastly, this result also provides a simple explanation
to the observation of oscillations in many natural systems [2],
[3].

Many biological systems and “low level” physiological
processes such as temperature regulation, blood oxygenation,
and others, are unstable [2], [3], [4], and controlled auto-
matically and unconsciously. Under specific circumstances,

they exhibit oscillation that, we argue, is an inevitable
side effect of degrading system performance in dynamical
systems with delay for enhancing system performance under
another circumstances. In other words, to achieve efficiency
under a certain case, we pay for oscillations in another case.
In the past, the origin of oscillations in unstable systems have
been poorly explained by experts in control, and it is poorly
understood by researchers outside of the control community.
In this paper, we hope to close this gap by providing a
simple and intuitive explanation to the existence of seemingly
cryptic oscillations in many natural systems, and shed some
lights on the origin of oscillations in natural systems.

To illustrate the waterbed effect and the resulting oscilla-
tion, we will consider a case study in sensorimotor control
– human stick balancing. Balancing a stick on a person’s
hand is a popular case study in the sensorimotor control
literature [5], [6], [7], which can be modeled as an inverted
pendulum on a moving cart that is familiar to engineers and
scientists [8], [9]. A more complete discussions on robust
control theory using the stick balancing as a case study is
available at [10]. In this paper, we will consider an even
more simplified stick balancing model. We understand that
ordinary differential equation is not taught in high school,
but this is the simplest model we have to explain important
concepts in this paper.

Despite its simplicity, this case study is interesting because
it highlights a few important points in system design [10]:

• Balancing a short stick is hard. A shorter stick has
larger unstable pole, and large unstable pole makes a
system less robust and harder to control.

• Low fixation point makes it hard to balance. Fixation
point below the center of mass of a stick introduces
an unstable zero into the system reducing the system
robustness and causing the stick to become harder to
balance.

• Delay hurts system performance. Delay prevents a
system from responding to disturbances quickly. As a
result, the system becomes less robust to disturbances.
This effect is exacerbated further if the system is
unstable.

• Waterbed effects are fundamental to system design, and
oscillations are unavoidable as a result. An enhanced
system performance for a particular disturbance will
inevitably cause a degraded performance for other dis-
turbances.

The last bullet point will be the focus of this paper. More
detailed discussions of all the statements above are available
in [10], which uses the frequency domain analysis.



A. Organization

The rest of this paper is organized as follows. Section
II explains the waterbed effects and oscillations using a
simple pictorial example. Section III formally defines the
concepts in Section II. In Section IV, a simple stick balancing
model is used to illustrate the main results. Lastly, Section
V summarizes the main points of this paper.

B. Notation

The set of real numbers is represented as R. The set of
real m × n matrices is represented as Rm×n. A state x at
time t is written as x(t), and a trajectory x from time 0 to
T is written as x(0 : T ). The infinity norm of a trajectory x
is given by ‖x‖∞ = supt x(t).

II. WATERBED EFFECTS AND OSCILLATIONS

The waterbed effect of bode integral suggests that an
enhanced system performance for some input frequency will
inevitably produce a degraded system performance for other
frequencies. The proof of waterbed effect uses frequency
domain analysis [1]. In this paper, we attempt to explain
this phenomenon using only time domain. Before we pro-
ceed with the math in the next section, we would like to
conceptually explain the waterbed effect and the resulting
system oscillations using a few illustrative plots in Fig. 1.

In this work, the waterbed effect refers to an enhanced
system performance for a specific disturbance model will
produce a degraded system performance for other distur-
bance models. We quantifies system performance using the
L1 norm of the system output y

max
‖w‖∞≤1

‖y‖∞

where w represents the disturbance.

impulse

step

rectangular

closed	loop	responsedisturbance

zero	steady	
state	response

oscillation

periodic
double	in	magnitude	

Fig. 1. A system’s closed loop optimal L1 responses. Blue curves represent
the case when only optimal L1 norm is required. Red curves represent
the case when optimal L1 norm and a zero steady state step response are
required. The vertical light blue line denotes the delay. Oscillation occurs
and maximum state magnitude doubles as a result of requiring zero steady
state step response.

Suppose a system achieves the closed loop responses given
by blue curves in Fig. 1 with respect to minimizing the L1

norm. Using this controller, the step response achieves a non-
zero steady state. However, in many applications, the step
response is required to be zero at steady state.

Now, consider another case where we not only require for
a minimal L1 norm, but also zero steady state step response.
The closed loop responses are shown in Fig. 1 as the red
curves. Note that oscillation occurs under the rectangular dis-
turbance model and the peak of the state’s magnitude doubles
for the periodic disturbance model. Therefore, oscillations
and a degraded system performance at some disturbance
models are consequences that one has to pay for to achieve
a desired system performance at another disturbance model.

This simple explanation using Fig. 1 is very powerful
because it is simple, it does not require the system dynamics
to be either discrete or continuous in time, and it also does
not require the system to be stable. In fact, the mathematical
proof is exactly what is given by this figure, explained next.

III. FORMAL DISCUSSION

This section discusses the mathematical formulation that
gives rise to the results in Section II. The formulation here
is independent of the system stability or time continuity.
Consider a single-input-single-output linear time invariant
system S where in continuous time, S is (with some abuse
of notation)

ẋ(t) = Ax(t) +B(u(t− T ) + w(t))
y(t) = Cx(t)

u(t) = K(x(0, t), w(0, t), u(0, t− 1)),

and in discrete time, S is

x(t+ 1) = Ax(t) +B(u(t− T ) + w(t))
y(t) = Cx(t)

u(t) = K(x(0 : t), w(0 : t), u(0 : t− 1))

where x(t) ∈ Rn is the state, u(t) ∈ R is the control action,
w(t) ∈ Rn is the disturbance, A ∈ Rn×n, B ∈ Rn×1, C ∈
R1×n, and T is the delay. Let x(0) = 0, and S has a positive
open loop impulse response up to time T . The control action
u(t) is a function of the past states, and the goal of the
controller is to reject disturbances w(t).

Let yi(t) be the open loop impulse response for output
y(t) and yi(t) ≥ 0 for all t ≤ T . Then, the step response of
the state is given by

zi(t) =

∫ t

0

yi(τ)dτ

in continuous time and

zi(t) =

t∑
τ=0

yi(τ)

in discrete time.



A. Case 1: Optimal L1 norm

First, let us consider the case when the system perfor-
mance of S is optimal with respect to the following cost
function

min
K

max
‖w‖∞≤1

‖y‖∞ (1)

which minimizes the L1 norm of S.
The optimal impulse response y1(t) of output y(t) in Case

1 is given by

y1(t) =

{
yi(t) 0 < t ≤ T
0 otherwise

where yi(t) is the open loop impulse response for output
y(t). This response corresponds to the blue curves in the
first row of Fig. 1. Then, the optimal step response of output
y(t) is

z1(t) =


0 t ≤ 0

zi(t) 0 < t ≤ T
zi(T ) otherwise

where zi(t) is the open loop step response for output y(t).
This response corresponds to the blue curve in the second
row of Fig. 1.

Consider the following worst case disturbance model

w(t) =

{
1 t ∈ [0, τ ]

0 t 6∈ [0, τ ]
. (2)

Then, the closed loop response would be

q1(t) =


zi(t) 0 < t ≤ T
zi(T )− zi(t− T ) T < t ≤ 2T

0 otherwise

(3)

whereby this response corresponds to the blue curve in the
third row of Fig. 1.

More generally, the worst case disturbance model given
by a periodic function

w(t) = (−1)γ(t) (4)

where γ(t) = bt/T c results in the closed loop response

p1(t) = (−1)γ(t)(zi(t− γ(t)T )− zi((γ(t) + 1)T − t))

and

min
K

max
‖w‖∞≤1

‖y‖∞ = ‖p1‖∞ = sup
t∈[0,T ]

|zi(t)| (5)

gives the optimal L1 norm of the system S in Case 1. This
response corresponds to the blue curve in the last row of Fig.
1.

If S is one dimensional system (i.e. n = 1) and A = 1 is
marginally stable, the closed loop responses for Case 1 are
exactly the blue curves in Fig. 1.

B. Case 2: Optimal L1 norm + zero steady state step
response

Now, consider the case the system performance is optimal
with respect to (1) and also satisfies the zero steady state
step response requirement.

Then, the optimal impulse response for output y(t) in Case
2 needs to be

y2(t) =


yi(t) 0 < t ≤ T
−yi(2T − t) T < t ≤ 2T

0 otherwise

and the optimal step response would then be

z2(t) =


zi(t) 0 < t ≤ T
zi(2T − t) T < t ≤ 2T

0 otherwise

where zero steady state is achieved. These responses corre-
spond to the red curves in the first and second rows of Fig.
1 respectively.

In this case, with the disturbance model (2), the closed
loop response would be

q2(t) =


zi(t) 0 < t ≤ T
zi(2T − t)− zi(t− T ) T < t ≤ 2T

−zi(3T − t) 2T < t ≤ 3T

0 otherwise

(6)

where by this response corresponds to the red curves in the
third row of Fig. 1 respectively. Notice that (6) oscillates
while (3) does not.

Furthermore, the closed loop response with the periodic
disturbance (4) would be

p2(t) = 2(−1)γ(t)(zi(t− γ(t)T )− zi((γ(t) + 1)T − t))

and

min
K

max
‖w‖∞≤1

‖y‖∞ = ‖p2‖∞ = sup
t∈[0,T ]

2|zi(t)| (7)

gives the optimal L1 norm of the system S in Case 2. This
response corresponds to the red curves in the last row of Fig.
1 respectively. Note that (7) is two times (5).

Similar to Case 1, if S is one dimensional (i.e.n = 1) and
A = 1 is marginally stable, the closed loop responses for
Case 2 are the red curves in Fig. 1.

C. Summary

Based on simple calculations above, we can observe two
consequences of designing for a system to have zero steady
state step response and to also achieve L1 optimal system
performance. First, the system performance degrades. The
optimal L1 norm doubles in this case. Hence, optimizing for
one type of disturbance will inevitable results in degraded
performance under other types of disturbance – the essential
messages of waterbed effect. Second, oscillation occurs. This
example shows a very important origin of oscillations in
many systems. The presence of delay makes oscillation an



unavoidable side effect when the step response of the systems
needs to be zero in steady state.

Furthermore, the formulation presented in this section is
independent of whether the system dynamics is stable or
unstable, discrete or continuous in time, and single state
or more. This methodology is thus applicable to many
applications unconstrained by the type of dynamical model
available.

IV. STICK BALANCING

This section will apply the formulations from the previous
section in the stick balancing case study discussed earlier.
Consider a very simple model of human stick balancing
(see Fig. 2) where we assume that the stick mass is a lot
smaller than the mass of the human balancing the stick and
acceleration input. Then, the linearized dynamics of the stick
is characterized by

ẍ(t) = u(t− τ) + w(t)

ẍ(t) + lθ̈(t) + gθ(t) = 0

y(t) = x(t) + l0θ(t) (8)

where x is the horizontal displacement of the arm, θ is
the pendulum tilt angle from the vertical, u is the control
force, y is the position measurement using the eye of z,
the position of interest, w is the actuation noise, g is the
gravitational acceleration, l0 is the fixation point, and l is
the effective stick length. Sensorimotor control delay due
to signal transmissions and processing is represented as τ
whereby visual processing is the major contributor [11], [12],
[13].

Simple algebraic manipulation of (8) gives

˙̄x(t) = Ax̄(t) +B(u(t− T ) + w(t)) (9)
y(t) = Cx̄(t)

x̄(t) =
[
x(t) v(t) θ(t) ω(t)

]T
A =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 − gl 0

 , B =


0
1
0
− 1
l

 , C =
[
1 0 l0 0

]
where v(t) = ẋ(t) and ω(t) = θ̇(t).
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Fig. 2. A schematic of balancing an inverted pendulum on one’s palm.
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Fig. 3. Closed loop responses for system (8) under different disturbance
model. Blue curves represent the case when only optimal L1 norm is
required. Red curves represent the case when optimal L1 norm and a
zero steady state step response are required. The vertical black dashed line
denotes the delay at 300ms. Oscillation occurs in (c) and maximum state
magnitude doubles from 0.003 to 0.006 in (d) as a result of requiring zero
steady state step response.

Given (9) and let g = 9.8m/s2, l = l0 = 1m and τ =
0.3s, the open loop impulse response is

yi(t) = CeAtB = t− 0.32 sin(3.13t)

and the open loop step response is

zi(t) =

∫ t

0

CeA(t−s)B ds

= 0.5t2 − 0.20 sin(1.57t)2.

We can then compute the optimal closed loop responses
given in Table I and Fig. 3. As expected, from Table I
and Fig. 3, observe that the closed loop response in Case
2 oscillates under the rectangular disturbance model, and the
infinity norm of the closed loop response in Case 2 is twice
as much as the infinity norm of the closed loop response in
Case 1 under the periodic disturbance model.

V. CONCLUSION

Using L1 norm as the metric for system performance
allows us to analyze system in the time domain which is more
intuitive and realistic. This methodology inspires new ways
of understanding waterbed effects, which is the “conservation
law” in control, and the presence of oscillations in many
natural systems. The result states that by improving closed-
loop system performance for a specific disturbance, the
closed-loop system performance for other disturbances will
have to degrade and oscillation will occur as a result.

In the future, we plan to do the derivation more carefully,
and generalize it to systems that are not necessarily single-
input-single-output or have positive closed-loop impulse re-
sponse for as long as the delay. We also encourage readers
of this paper to further explore this new way of analysis in
various other areas of control theory.



Disturbance Closed Loop Response
Case 1 Case 2

Impulse w(t) =

{
1 t = 0

0 t 6= 0
y1(t) =

{
t− 0.32 sin(3.13t) t ∈ [0, τ ]

0 t 6∈ [0, τ ]
y2(t) =


t− 0.32 sin(3.13t) t ∈ [0, τ ]

−0.6 + t+ 0.32 sin(1.88

−3.13t) t ∈ (τ, 2τ ]

0 otherwise

Step w(t) =

{
1 t ≥ 0

0 t < 0
z1(t) =


0 t ≤ 0

0.5t2 − 0.20 sin2(1.57t) t ∈ (0, τ ]

0.0032 t > τ

z2(t) =


0.5t2 − 0.20 sin2(1.57t) t ∈ [0, τ ]

0.08 + (−0.6 + 0.5t)t

+0.10 cos(1.88− 3.13t) t ∈ [τ, 2τ ]

0 otherwise

Rectangular w(t) =

{
1 t ∈ [0, τ ]

0 t 6∈ [0, τ ]
q1(t) =


0.5t2 − 0.20 sin2(1.57t) t ∈ [0, τ ]

0.06 + (0.3− 0.5t)t

−0.10 cos(0.94− 3.13t) t ∈ (τ, 2τ ]

0 otherwise

q2(t) =



0.5t2 − 0.20 sin2(1.57t) t ∈ [0, τ ]

0.14− 0.3t

−0.10 cos(0.94− 3.13t)

+0.10 cos(1.88− 3.13t) t ∈ [τ, 2τ ]

−0.30 + (0.9− 0.5t)t

−0.10 cos(2.82− 3.13t) t ∈ [2τ, 3τ ]

0 otherwise

Periodic w(t) = (−1)γ(t) p1(t) = (−1)γ(t)(zi(t− γ(t)τ)
−zi((γ(t) + 1)τ − t))

p2(t) = 2(−1)γ(t)(zi(t− γ(t)τ)
−zi((γ(t) + 1)τ − t))

TABLE I
CLOSED LOOP RESPONSE FOR SYSTEM (8)
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An experimental video game platform for sensorimotor control

Adam Dai, Emily Jensen, Dimitar Ho, John Doyle

Abstract— The aim of this paper is to describe a low-cost
experimental video-game platform that can potentially be used
to explore the theory presented in the earlier papers in this
tutorial collection. We want to quantify if the theory correctly
predicts planning performance as a function of advanced warn-
ing, and then how close to optimal are humans in multiplexing
planning and reflex tasks. Both are motivated by examples such
as riding a mountain bike down a steep twisting rocky trail.
To that end we’ve created a game that uses a standard force
feedback steering wheel to generate ”bumps” together with
a screen image that shows a ”trail” to follow as well as the
deviation from the trail both to bumps and poor planning. The
game can have bumps and/or a trail individually or together
and the advanced warning of the trail can be adjusted to any
value. Preliminary α-testing of the platform has generated data
that is strikingly consistent with the theory, which suggests it
is suitable for more serious experimental studies. Everything is
low cost and open source so should be easily replicated.

I. INTRODUCTION

This paper describes a computer game aimed to illustrate
and explore the theory from [1], and figures and equations
from [1] will be denoted by a ′. In this section we will
describe the setup of our “driving” simulation, which is
intended to capture some essential features of riding a
mountain bike down a steep, turning, rocky trail as in Fig.
1′, but with no danger of real crashes. We will then explain
the experiments and compare them with the theory [1].

The main goal of the driving game is to test how well a
player can drive along a given trail in the virtual environment
with possibly limited advanced warning while being exposed
to force disturbances. As shown in the screen capture of
the game (1), the player sees a red vertical line which is
following a white trail. As the white trail is moving down
the screen, the player has the task to move the blue vertical
line such that it tracks the red vertical line along the large
horizontal line. The blue line is the wheel angle of a Logitech
G27 Racing Wheel connected via USB to a computer.

The G27 steering wheel has force feedback capability, i.e.,
can be programmed to apply force, thus causing the wheel
to move independent of user input, and thus the user must
supply a counter force to have a small error. This allows us
to simulate disturbances, analogous to the ones one might
experience from bumps in the trail as felt in handlebars. This
is to add an element of reflexive control to multiplex with
the visual task of following the game’s path.

For every game run we can program different force dis-
turbances, change the amount of advance warning the player
receives of the white trail and it’s difficulty. Overall, the
main functionality of our driving game setup is to enable us
to design experiments/game runs which allow us to analyze
how the tracking error (difference between red and player’s

vertical line) changes when we expose the player to different
disturbances, look-ahead windows and difficulty of the trail.
In the next section we will discuss the experiments performed
in this paper and show how they are aimed to illustrate the
main results of [1].

Fig. 1: Screen capture of running experiment

II. EXPERIMENTS

A. Bumps, Trails, Bump and Trails

This experiment aims to give us insight into how the
player’s performance changes during three scenarios:

1) ”Bumps”: Track a constant trail (the red trail line is
not moving) subject to force disturbances on the wheel:

2) ”Trails”: Track moving trail while having look-ahead
but no forces:

3) ”Trail with Bumps”: Track a moving trail while there
are force disturbances on the wheel:

The player spends 60 seconds in each of the above sce-
narios in the order (Bumps, Trail, Trails with Bumps) with
5 seconds rest preceding each scenario. Furthermore the
game is setup to give the player a standard look-ahead
window/advanced warning of 1 second, which has been
chosen such that the player doesn’t experience an additional
handicap from lacking advanced warning. The disturbance
and the trail the player experiences during the isolated phases
”Bumps” and ”Trails” are the same ones as in the combined
”Trails with Bumps” phase. This is to cleanly compare the
players performance when facing the separate tasks versus
when he has to multiplex both of them.

As a disturbance we initially chose a binary random
signal, whose amplitude is the maximum possible torque
the motor of the steering wheel can exert. Furthermore, the
switch decisions between max positive and negative torque
is made every 100ms. A similar random binary switching is



L1-Norm Error Eb Et Eb + Et Ebt

Random Binary Dist. 0.182 0.155 0.337 0.288
Adversarial Feedback Dist. 0.178 0.152 0.330 0.306

TABLE I: Comparison of l1-Tracking Error Norm: Different
Disturbance Models vs. Different Experiment Phases.

of the trail derivative. More specifically, the trail travels at a
constant velocity but randomly switches its directions such
that it always stays in the screen range comfortably visible
by the player. We adjusted the velocity of the trail on the
screen such that the required steering wheel turning rate is
approximately 75◦/sec.

Figure 2 illustrates 5 second snapshots of our experiment
design and corresponding tracking errors of a typical exper-
iment run by one of the authors (Ho). The trail presented
to the player is painted in black and is depicted in Sub-
Figures (2a),(2b) and (2c), where each of the plots considers
the ”Bumps”, ”Trails” and ”Trails with Bumps” phase of the
experiment, respectively. The players trajectory is presented
in the same plots with the colors blue, red and green,
indicating the three different phases of the experiment in
each of the Sub-Figures. In Addition, Sub-Figures (2d)-
(2f) correspond to the same snapshots of the experiment
as (2a)- (2c), but plotting the tracking error of the player,
i.e. difference between trail and player’s. The colors red,
blue and green indicate in the same way the tracking error
corresponding to the particular phase of the experiment.
Finally Sub-Figure (2g) overlays Sub-Figures (2d)- (2f) to
display the comparison of the player’s tracking performance
in the different experiment phases.

The purple-empty and orange-filled stem plots in Figures
(2a) - (2g) indicate the timing and direction of the distur-
bances and trail curve changes, respectively. Note that both
the wheel forces and the trail rates are square waves, and
the stems indicate where these square waves switch (so are
derivatives of the forces and rates).

Comparing the stem plots of (2a), (2b) and (2d), (2e)
to (2c) and (2f), notice that the experimental setup of
the ”Trails with Bumps” phase is a superposition of the
disturbance and trail characteristic of the individual ”Bumps”
and ”Trails” phases. The player’s tracking error of the ”Trails
with Bumps” is roughly the sum of the errors of the separate
”Bumps” and ”Trails,” which qualitatively agrees with the
idea that humans have evolved to do such visual plan-
ning/tracking and force rejection reflex tasks well together.

This phenomenon is qualitatively consistent with the
recent results of [1], which argues that optimally robust
individual controllers for ”Bumps” and ”Trails” designed
separately also combine trivially to be optimal for ”Trails
with Bumps” and that the errors also simply sum. In addition,
we implemented a more adversarial feedback model of the
force disturbance and additional experiments showed that
error signals for the ”Trail with Bumps” scenario still had
good multiplexing performance

To quantify this observation, table (I) and (II) present the

L∞-Norm Error Eb Et Eb + Et Ebt

Random Binary Dist. 0.39 0.86 1.25 1.23
Adversarial Feedback Dist. 0.34 0.61 0.95 1.17

TABLE II: Comparison of l∞-Tracking error norm: Different
Disturbance Models vs. Different Experiment Phases

l1 and l∞-error-norm of a 50 second window, taken from
the middle of each experimental phase corresponding to the
two different disturbance models. While the columns Eb, Et,
Etb denote the phases ”Bumps”, ”Trails” and ”Trails with
Bumps” of the experiment, the column Eb+Et simply adds
up the error-norms of the first two. Inspecting this table, we
observe that for the binary random disturbance, the error-
norms of the combined phase ”Trail with Bumps” is close
but smaller then the sum Eb + Et. We also notice from
this data, that the error-norm of the ”Trails with Bumps”
phase and their relation to the other errors depends on the
disturbance model. More specifically, the experiments with
our simple adversarial disturbance show that the errors of
the combined task show a bigger ratio of Ebt to Eb + Et
with respect to the binary random model. This also opens
up potentially interesting follow-up question of what is the
worst-case disturbance to maximize that ratio.

B. Varying Advanced Warning

The purpose of this experiment is to evaluate how the
length of the look-ahead window, i.e advanced warning
affects the player’s performance to track a trail without being
exposed to additional disturbances. In the words of the pre-
vious section, this experiment requires to track the randomly
generated trail from the ”Trail” phase without ”Bumps” but
instead with different advanced Warning intervals.

The experiment is 400 seconds long and consists of
one continuous ”Trail” Phase which reduces the look-ahead
window every 30 seconds. Starting off with the first two
look-ahead windows being 1sec and 0.75 secs, the game then
starts to decrease the window from 0.5sec in 0.1 sec steps
down to -0.5 sec, where negative look-ahead means that we
are displaying only past information of the trail.

An evolution of the absolute tracking error of the player
as the game progresses is depicted in Figure (3). The plot
displays only the mid 20 seconds of each of the 30 second
intervals to neglect the effect of the player adjusting to the
new look-ahead window. The progression of the error in
the blocks of constant look-ahead demonstrate the intuitive
effect, that the player looses performance with a decrease of
advanced warning.

To quantify that effect more in detail, we evaluate the
l1, l2 and l∞ error norm for every 20 second long window
corresponding to an advanced warning level. Summarizing
these calculations in a plot gives us Figure (4), which
demonstrates how the players error-norm does not change
until the advanced warning reaches 0.3 seconds and then
increases in approximately linear fashion.
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Fig. 2: Data-Snapshot of combined ”Bumps” (blue) , ”Trails” (red) and ”Trails with Bumps” (green) Experiment.
Orange/Purple Stem: Disturbance/Trail Curve Occurrence and Direction.
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III. RELATION TO THEORY

The first comparison is between the data in Fig 2, and
Fig 7′ from [1]. The experiment has very high damping and
minimal inertia, so is roughly first order and neutrally stable,
so is thus roughly like the model in Fig 7′ with a = 1,
though further modeling and system ID is needed to make
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Fig. 4: Error Norms vs. Given Advanced Warning Interval

this more precise. The disturbance r would correspond to
the trail changes, and w the wheel forces. As in Fig 7′, the
player must control errors to both via a common actuator of
arms and hands on the wheel. The theory predicts that these
planning (”Trail”) and reflex (”Bumps”) tasks have combined
error roughly equal to the sum of the individual errors, which
is the case for the data in Fig 2. This is encouraging that



the platform has potential, but obviously more modeling and
experimentation is needed to draw further conclusions.

The data in Fig 4 can be compared more directly to Fig
6′ but for a fixed nerve:

max [0, T − τ ] + (2λT − 1)−1. (1)

where τ is the advanced warning, which is the x axis in
Fig 4. The theory predicts that when τ < T the error will
increase linearly with τ , where T is the time delay of the
visual feedback system. This fits the data in Fig 6′ strikingly
well with T ≈ 250ms, which is a typical visual delay for
humans. Note that this is one run and not average over
multiple runs, so the linearity of the errors is remarkable.
Again, it is encouraging that the platform could be used for
more serious studies. This game will be demoed in a booth
at CDC, so come try it yourself.
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Complexity of `1 Optimal Controllers for Simple Systems

Emily Jensen, John Doyle

Abstract— The `1 optimal control framework is particularly
convenient for introducing basic control concepts in a max-
imally accessible way. However, it is also known that even
simple linear systems can have `1 optimal controllers that
are of arbitrarily high dimension or are nonlinear, neither of
which happens in comparable h2 or h∞ problems. Although
this behavior in the `1 framework is known, the causes and
consequences have yet to be resolved. Since these oddities are an
obstacle to accessibility, this paper reconsiders the `1 “complex
controller” with very simple and clear examples using stable
and well behaved systems. Analytic formulas in this paper help
to provide insight and clarity to this topic which has been mostly
dormant for the past 20 years. Although we do not fully resolve
the issues of existence of complex controllers and how to avoid
them, the insight provided through simple examples is a first
step resolving this annoying aspect of `1 optimal control.

I. INTRODUCTION

In this paper, we focus on `1 optimal control and its possi-
ble complexities, and show that in some cases the `1 optimal
controller may be of arbitrarily high dimension. In particular,
we will demonstrate through a simple example that this issue
can occur even in stable systems, and for a range of objective
functions and (stable) zero locations. Although zeros are not
the only factor in causing high dimensionality, they do play
a crucial role which is worth further examination. Papers
in the past have highlighted this issue, but without clear
explanations as to why. For instance, [1] has an example
of arbitrarily high dimensional controllers, but this appeared
to be caused by exotic conditions involving unstable poles
and zeros, and there was no clear intuition to the behavior
or its cause.

In our example, we minimize a convex combination of
the output and control action for a stable system which is
seemingly benign, having finite (in time) open loop impulse
response (FIR). For certain weights in the objective function
and a range of zero locations, we show that the optimal
controller for this system can become arbitrarily complex.
This behavior is important to understand, but hopefully it is
ultimately not detrimental in most situations, as controller
memory is relatively cheap and becomes another variable
to be traded off. We provide analytic formulas of the op-
timal output, control action, and dimension of the optimal
controller for this simple example. These formulas provide
clarification to the cause of this strange high dimensionality
and clearly demonstrate the trade off between the cost of
control and cost of output.

Lastly, we use a well-known example from optimization,
to construct a very simple linear problem in which the
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optimal controller is nonlinear. Again, the possibility of this
behavior is already known [2], but the exact conditions for
when or why it occurs is lacking. We hope that studying this
and other simple examples will help clarify where and why
nonlinear controllers arise. This paper does not provide the
final answer to the question of controller complexity, but it
helps to demystify some of the unexplained behavior while
addressing and clarifying key issues.

II. NOTATION AND PRELIMINARIES

Notation: For a vector v ∈ IRn, let vi denote the
ith element of v. Then the `2 norm of v is defined as
||v||2 =

√∑n
i=1 v

2
i and the `1 norm of a v is defined as

||v||1 =
∑n
i=1 |vi|.

The `1 norm of a sequence of real numbers x is defined as
||x||1 =

∑∞
i=1 |xi| where xi is the ith entry in the sequence

x.

Definition 1: For a discrete time single input single output
system with input u and output y, the zero dynamics of the
system are defined to be the dynamics the input u is required
to follow in order to maintain an output of y(t) = 0 for all
times t. z ∈ IR is a zero of a system if it is a pole of the zero
dynamics of that system. A zero at z is an unstable zero if
it has magnitude |z| > 1.

III. A SIMPLE SYSTEM WITH A HIGH DIMENSIONAL
CONTROLLER

A new example shows that even simple, well-behaved
systems can have `1 optimal controllers which are dynamic
and of arbitrarily high dimension. This example will motivate
the definitions of a zero and zero dynamics and will provide
insight as to how these affect the behavior of the system. Let

x(t+ 1) =

(
0 1
0 0

)
x(t) +

(
0
1

)
u(t)

y(t) =
(
ζ2 −2ζ

)
x(t) + u(t)

(1)

where x(t) ∈ IR is the state at time t, y(t) ∈ IR is the
output at time t, and u(t) ∈ IR is the control input at
time t. This system is stable, with two poles at 0. We
wish to find the optimal stabilizing control strategy which
minimizes a convex combination of the output, ||y||1, and
control action, ||u||1, of system (1), given the initial condition

x(0) =

(
0
1

)
. We assume that the control action at time t

is full information, having access to the current and previous
states and previous control actions. The optimization problem



can be written as:

minimize
u

(1− γ)||y||1 + γ||u||1
subject to (u, y) satisfy dynamics (1)

x(0) =

(
0
1

) (2)

The special case when ζ = 1 allows us to easily solve
for the optimal controller analytically and gain insight to the
form of the solution. For this choice of ζ, it can be seen
that the open loop response of system (1) is: y(0) = −2,
y(1) = 1, y(t) = 0 for all t ≥ 2. Therefore, this system is
stable and has an open loop response which remains zero for
t ≥ 2. Strangely, even with such a seemingly benign system,
we will show that the optimal controller solving optimization
problem (2) may be become arbitrarily complex for small
enough values of γ. With ζ = 1, explicitly iterating 1 gives:

y(0) = u(0)− 2

y(1) = 1− 2u(0) + u(1)

y(t) = u(t− 2)− 2u(t− 1) + u(t), t ≥ 2

(3)

and the zero dynamics for system (1) are given by:

u(t) = 2u(t− 1)− u(t− 2) (4)

so the system has 2 zeros at 1. The optimization problem
(2), with ζ = 1, can be solved numerically using a linear
program (LP). If we constrain the output to be zero after
some finite time tf we can rewrite ||y||1 as a finite sum:

||y||1 = |u(0)− 2|+ |1− 2u(0) + u(1)|+
tf∑
t=2

|u(t− 2)− 2u(t− 1) + u(t)|
(5)

If y(t) = 0 for all t ≥ tf , then it must be that u(t) = 0
for all t ≥ tf − 1, in order to guarantee internal stability.
Then optimization problem (2) with ζ = 1 can be written as
a linear program:

min
u

(
(1− γ)

(
|u(0)− 2|+ |1− 2u(0) + u(1)|+

tf∑
t=2

|u(t− 2)− 2u(t− 1) + u(t)|
)
+ γ

tf∑
t=0

|u(t)|

)
subject to y(t) = 0, t ≥ tf

u(t) = 0, t ≥ tf − 1
(6)

Numerically solving the linear program (6) for various
values of γ always gives a sparse output which is 0 except at
two times: t = 0 and t = T , where T varies with γ. Ideally,
we’d prove this directly rather than relying on numerical
experiments, but very few problems can be solved analyti-
cally, so fixing this is not a priority. The main motivation for
analytic results here is to get insight into the problem.

If we do add the additional constraint to (2) that the output
is zero except at times t = 0 and t = T , then it is easy to
solve this problem analytically. Indeed, a simple formula can
be derived which describes the final time T in terms of the

weight γ while providing clear insights into the form of the
solutions. The solution to the optimization problem (2) with
this added constraint corresponds to an optimal controller
which is (T − 2) dimensional, where T is the time of the
final nonzero output. Then, as the following theorem states,
the weight on the output in the objective function can be
chosen so that the optimal controller is of arbitrarily large
dimension.

Theorem 2: Fix ζ = 1 and additionally constrain (2) so
that the output y must be 0 at all times except t = 0 and
t = T . For any such T , we can choose a weight γ so that
the optimal controller is of dimension (T − 2).

To prove theorem (2), we will first prove a lemma which
shows that the norms of the output and control action of the
system can be written only in terms of one parameter - the
final time T .

Lemma 3: The norms of the optimal control action and
output solving (2) with the additional constraints as stated
above are:

||u||1 =
T − 1

2
and ||y||1 = 1 +

2

T
.

Proof of lemma (3): If the output y is zero for all times
except 0 and T and the control action is stabilizing, then
u(t) = 0 for all t > (T − 2), and using equation (3) the
norms of the output and control action can be written as:

||y||1 = |y(0)|+ |y(T )| = |u(0)− 2|+ |u(T − 2)| (7)

||u||1 =

T−2∑
t=0

|u(t)| (8)

Using the fact that the control action u is following the zero
dynamics (4) whenever the output is zero, the general form
of the control action at time t can be written as:

u(t) = (t+ 1)u(0)− t (9)

To see why formula (9) is valid, note that if y(1) = 0, then
u(1) = 2u(0)−1, and if y(2) = 0 also, then u(2) = 3u(0)−
2. Using induction, it can be seen that in general, if y(t) = 0,
then u(t) = (t + 1)u(0) − (t + 2). Since u(T − 1) = 0,
equation (9) can be evaluated at time t = (T −1) to provide
an analytic formula for u(0):

u(0) =
T − 1

T
(10)

Combining equation (10) with the formula for u(t) given
by (9), we see that the control action at time t ≤ (T − 1)
can be written as:

u(t) = 1− t+ 1

T
(11)

Using this general formula for u(t) along with equation
(3), we can write the general form of the output at times
t = 0 and t = T :



y(0) = −1− 1

T

y(T ) =
1

T

(12)

Combining equation (12) with equation (7), the norm of
the output can be written in a simple intuitive form: ||y||1 =
|y(0)|+ |y(T )| =

∣∣−1− 1
T

∣∣+ ∣∣ 1T ∣∣, which can be simplified
to:

||y||1 = 1 +
2

T
(13)

Using equations (11) and (8), the norm of the control action
can also be written in a simple form. Since u(t) = 0 for all
t > (T − 2), ||u||1 =

∑T−1
t=0 |u(t)| =

∑T−1
t=0

∣∣1− t+1
T

∣∣. This
can be simplified to:

||u||1 =
T − 1

2
(14)

proving lemma (3) �.
Proof of theorem (2): Using lemma (3), the optimization

problem (2), with ζ = 1 and the additional constraint that
the output is nonzero only at times t = 0 and t = T , can be
rewritten so that the decision variable is the final time T :

minimize
T∈N

(1− γ)
(
1 +

2

T

)
+ γ
(T − 1

2

)
(15)

The objective function in (15) is convex in the domain T > 0
for T ∈ IR and γ fixed in (0, 1), and global minimum is given
by Tγ =

√
4(1−γ)
γ . Because of convexity, the optimal integer

value of T must be one of the two closest integers to Tγ .
Note that Tγ →∞ as γ → 0; choosing γ = 4

T 2+4 results in
an optimal controller which is (T − 2) dimensional, proving
theorem (2) �.

In proving theorem (2), we showed that there is a corre-
spondence between the weight γ and the time of the final
nonzero output T . The dimension of the optimal controller,
as well as the norms of the optimal output and control action
are easily parameterized in terms of the parameter T . Given
any T , we can choose a corresponding weight γ = 4

T 2+4 .
We will therefore parameterize the optimization problem in
terms of the time T from now on, as it simplifies the analysis
of the system.

This example clarifies the behavior of the system, and
also shows the trade off between the cost of control, ||u||1,
and the cost of output, ||y||1. When T = 1, the optimal
control action is to apply no control, and the optimal output
is the open loop response. This corresponds to an objective
which only weights the control action. Conversely, when
T =∞, only the output is being weighted. This corresponds
to a controller which zeros the output immediately and
maintains a zero output at all times, so that the cost of
control is infinite and the system loses internal stability. A
value of 1 < T <∞ weights both the control action and the
output. The corresponding optimal control action zeros the
output at time t = 1, and then ramps downward following
the zero dynamics until reaching zero at time t = (T − 1),
after which it is held at zero. Zeroing the control action at
time t = (T − 1) causes the output to be nonzero at time

t = T .

The following figure demonstrates the output and control
action for T = 1, 1 < T <∞, and T =∞:

Fig. 1. Trajectory of optimal output and control action for various values
of T . For 2 ≤ T < ∞ the optimal controller is of order T − 2 and thus
the dimension of the controller can be made arbitrarily large.

The above figure gives a clear picture of the trade off
that occurs as the parameter T is varied, allowing us to gain
intuition as to why the dimension of the controller varies
based on how much the cost of output and control action
are weighted.

This problem can be generalized by allowing ζ 6= 1. In
this case, the zero dynamics are given by:

u(t) = 2ζu(t− 1)− ζ2u(t− 2) (16)

and the system has two zeros at ζ. With ζ 6= 1, there does
not exist an obvious analytic solution, and for most problems
in the `1 optimal control framework this is indeed the case.
The analytic solution for the simple case ζ = 1 provided
insight, but for problems even slightly more complicated
we must rely on numerical solutions. Numerical solutions
show that for a fixed zero location ζ 6= 1, the dimension
of the optimal controller increases as the weight on the
output is increased. High dimensional controllers occur
even for a range of stable zero locations, |ζ| < 1, further
demonstrating that although zero location has an impact, it is
not this condition alone which causes controller complexity.
Numerical solutions do not provide a specific condition for
when scenarios of controller complexity occur, but they do
provide evidence that complicated control laws arise in a
variety of cases, and are not solely the cause of instability
or unstable zero dynamics.

It is worth noting that although the dimension of the
optimal controller can become arbitrarily large, for our exam-



ple, we can easily restrict the controller to be of any finite
dimension we choose, and this is equivalent to increasing
the weight on the control. This restriction to a dimension
(T −2) controller in optimization problem (2) gives a sparse
output which zeros out in finite time T , and is exactly the
optimal solution to this optimization problem with different
appropriate choice of weight γ.

IV. A SIMPLE SYSTEM WITH A NONLINEAR
CONTROLLER

As a final aside, in this section we recall a well-known
example from optimization that shows that, even in simple
cases, an `1 optimal controller may be nonlinear. Although
this almost trivial example does not provide an explanation
regarding exact conditions of when or why this behavior
occurs, it does motivate further study of this topic. That
`1 optimal controllers may be nonlinear is already known
[2]. However, this behavior may seem even more odd than
the case of dynamic, high-dimensional controllers, and it is
unclear as to when this situation arises.

To start, consider the simple `2 optimization problem:

min
x

∣∣∣∣∣∣∣∣( y −Ax
x

)∣∣∣∣∣∣∣∣
2

(17)

where y ∈ IRn, x ∈ IRm, and A ∈ IRnxm. It is well-known
that there exists a simple closed-form solution to the above
optimization problem of the form x =My for some matrix
M . In this simple `2 optimization problem it is clear that the
optimal solution is simple and linear. However, even if we
add more complexity to this problem- adding dynamics in
continuous or discrete time, optimizing over the worst case or
average error, or adding `2 regularization terms- the optimal
solution remains minimally complex and linear as long as we
restrict our choice of norm to `2. An almost trivial version
of (17):

min
x

{
(y − x)2 + λ (x)

2
}

(18)

has the familiar solution:

x =
y

1 + λ
(19)

In contrast, even minimal departures from this `2 problem
can have optimal solutions which are nonlinear, when use
of the `1 norm is included. The simplest case is called `1
regularized denoising:

min
x

{
(y − x)2 + 2 |x|

}
(20)

This is a well-studied problem, known to have a nonlinear
soft thresholding solution:

x = soft(y, 1) (21)

where soft(y, λ) = sgn(y)max(0, |y| − λ).
Since such a small deviation from a pure `2 problem can

lead to nonlinear solution, it should not be surprising that
complex or nonlinear optimal controllers arise in the optimal
`1 framework. This was a static example but it is easy to turn
it into a very short FIR dynamic example.

Fig. 2. Nonlinear solution to linear `1 regularized denoising.

V. CONCLUSIONS

It has been known for decades that `1 optimal controllers
may be high dimensional and/or nonlinear; examples in
the previous two sections can hopefully help to clarify the
understanding of these odd behaviors. One reason these
complex behaviors of `1 optimal control seem surprising,
is the contrast from the well known h2 and h∞ problems,
for which the optimal full information controllers are static
and linear, and output feedback controllers are the same state
dimension as the plant. It remains unclear, however, exactly
when these issues arise, and what if any are their practical
significance. In the context of this series of tutorial papers,
seemingly gratuitously complex controllers are primarily a
potential obstacle to accessibility. If we are to “revive” the
`1 framework then these issues will need broader and deeper
study as part of a more general treatment of scalability to
more complex problems.
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