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ABSTRACT
This paper emphasizes the need for methodological frame-
works for analysis and design of large scale networks which
are independent of specific design innovations and their ad-
vocacy, with the aim of making networking a more sys-
tematic engineering discipline. Networking problems have
largely confounded existing theory, and innovation based on
intuition has dominated design. This paper will illustrate
potential pitfalls of this practice. The general aim is to il-
lustrate universal aspects of theoretical and methodological
research that can be applied to network design and veri-
fication. The issues focused on will include the choice of
models, including the relationship between flow and packet
level descriptions, the need to account for uncertainty gener-
ated by modelling abstractions, and the challenges of dealing
with network scale. The rigorous comparison of proposed
schemes will be illustrated using various abstractions. While
standard tools from robust control theory have been applied
in this area, we will also illustrate how network-specific chal-
lenges can drive the development of new mathematics that
expand their range of applicability, and how many enormous
challenges remain.

1. INTRODUCTION
The recent technological advances and the ubiquity of com-
munication and large-scale networks have presented research-
ers with new design and analysis challenges. The integra-
tion of heterogeneous modules and their complex interac-
tions make the problem seem intractable. The added re-
quirements of reliability and evolvability call for an integra-
tion of new mathematical tools and more methodological
frameworks to facilitate and also formulate the design and
analysis processes. There are many systems around us that
have evolved to have these properties, such as social and
ecological systems and biological networks etc. Analysis of
their functionality reveals the principles that either nature

or society followed to evolve. The question that arises then
is how to design and analyze large-scale networks for robust-
ness, reliability, and evolvability.

The multi-objective requirements for analysis and design of
such systems should be based on rigorous and repeatable de-
sign methodologies and systematic evaluation frameworks.
A simple example is the Internet where the first step towards
the construction of protocols was based largely on intuition.
Despite its brilliant innovation and enormous success in this
particular case this far, this approach is definitely not ad-
equate in the long run for large-scale network designs, as
underestimating the importance of certain system features
is usually only revealed in surprising failures after imple-
mentation. Such frameworks should not only provide com-
parability of various proposed designs but also facilitate the
analysis of their functionality and bring to the surface pit-
falls and propose cures. It is important both to provide
analysis methods that go behind mere simulation of point
scenarios, as well as methods that transcend the advocacy
of a single design solution.

In this paper we consider as a case study network conges-
tion control for the Internet, where the introduction of a uni-
fied framework enabled comparability and provided a better
understanding of the shortcomings of certain TCP/AQM
schemes, and allowing the construction of others. Indeed,
the advances in network technology have revealed both de-
ficiencies in the ad-hoc schemes as well as rigorous explana-
tions for their scalability, which is astonishing, even in retro-
spect. A well-known result is that the performance of some
TCP/AQM schemes deteriorates on increasing bandwidth-
delay product networks [12]. While TCP/AQM will be the
focus of this paper, as it has had a recent surge in progress,
our aim is to use it to illustrate broader methodological is-
sues that we claim are universally relevant to all complex
network research.

Developing robust models for the modules comprising the
system is the first, very important step both for analysis
and design. For the various modules in congestion control,
models of varying complexity can be constructed, ranging
from stochastic multi-scale ones to simple deterministic [18].
Through a series of simple assumptions very fine scale mod-
els can be simplified into ones that current analysis tools can
handle. This simplification process should account for all the
approximations made and the analysis methodology should
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take them into consideration, for otherwise the wrong con-
clusion for the original system properties may be obtained.
Robust control theory offers a unique framework for robust
model building by providing tools that can account for all
the simplifications in the reduction process in a systematic
way, through the introduction of uncertainty resulting in a
parameterized family of models [2]. Analysis then follows by
considering this set of models rather than a single nominal
one. The uncertainty can be static or dynamic, in which
case parts of the dynamics are ‘lumped’ together by consid-
ering worst-case scenario of input-output properties. Even
when designing the system, static and dynamic uncertainty
in the various system parameters can be incorporated in a
similar manner.

In particular for network congestion control, this process
produces uncertain deterministic nonlinear delay-differential
equation models, for which in general no scalable analysis
tools are available at the nonlinear level. Ignoring the ef-
fect of delays can be misleading in both analysis and design.
Analysis by linearization allows scalability, however it can
only provide a local picture which also can be misleading.
It is common practice to simulate using ns-2 more complex
model descriptions: this can be used to investigate specific
system behaviors, but can not guarantee functionality under
all possible parameters and initial conditions, and cannot be
used to study large networks. Thus what is really required
is a scalable nonlinear analysis procedure that includes the
effect of delays. This would allow scalable verifiability, one
of the most important issues in design, both for TCP/AQM
and hopefully ultimately for complex systems in general. In
this paper we will show two alternative ways of investigating
these uncertain nonlinear, delay-differential equation mod-
els: under fixed system dynamic structures, we will provide
scalable conditions for the functionality of the network for
arbitrary network sizes. And for various system descriptions
we will provide a framework for establishing the function-
ality of specific network topologies with a complexity that
varies in a polynomial manner with the size of the system
description [25].

Both procedures have their own merits, and are equally im-
portant. For simple network topologies and arbitrary dy-
namics the algorithmic procedure can provide simple proofs
of the functionality with tight conditions on the parame-
ters in the system. This allows the verifiability of model
descriptions not possible in the past, and expands the level
of modelling complexity for which tools exist, from linear
to nonlinear with delays. On the other hand, the proce-
dure leading to scalable conditions on the functionality of
arbitrary sized networks can provide conservative (relaxed)
conditions for functionality at the price of being scalable.

The paper is organized as follows. In section 2 we present
the unified framework that was used for network congestion
control, and the optimization/duality formulation which de-
composed the centralized problem into two decoupled ones.
In section 3 we will present how robust models can be con-
structed for the various modules that can enable design, and
in section 4 we will show how incomplete modelling or failure
to take into account important features of the problem can
lead to disastrous designs. In section 5 we present method-
ologies for evaluating the properties of networks that scale

with the network size, and present recent tools that allow
analysis of even more complicated system descriptions.

2. UNIFIED FRAMEWORKS
Technological advances in the past years have called for the
design of even more complex large-scale networks that of-
fer evolvability and robustness. This can only be achieved
by decentralizing the complex multi-objective optimization
problem into smaller ones that can be solved efficiently, and
at the same time solving the original one. At this top-level
view of the problem, one is not concerned with the dynamics
that the various modules will be endowed with; but rather
how the whole network will synergistically operate so as to
reach the desired equilibrium in a decentralized way. The
next step, which we will discuss in the sequel, is the choice
of appropriate dynamics for the modules so as to asymptot-
ically stabilize them around this equilibrium.

The attempt to set up this mathematical framework for net-
work congestion control began in the early 90’s. In [27], an
individual feedback scheme with fairly shared gateways had
been proposed to achieve a time-scale invariant, fair, stable
and robust performance design. Jain [7] brings up the issue
of proper congestion control mechanisms under heavy load.
Kevshav [9] develops a continuous-time model to unify the
treatment of various control laws. However, these models
are mainly based on queuing systems which cannot capture
the static and dynamic properties of the transport layer pro-
tocol.

Following the methodology defined in [8, 14, 13], consider
a network of L communication links shared by S sources
shown in Figure 1. The routing matrix R is given by:

Rli =

�
1 if source i uses link l
0 otherwise

Each source i has an associated transmission rate xi. All
sources whose flow passes through link l contribute to the
aggregate rate yl for link l, the rates being added with some
forward time delay τf

i,l. Hence we have:

yl(t) =

S�
i=1

Rlixi(t − τf
i,l) � rf (xi, τ

f
i,l) (1)

The link l reacts to the aggregate rate yl by setting conges-
tion information pl, the price at link l. This is the Active
Queue Management (AQM) part of the picture that is to be
designed. The prices of all the links that source i uses are
aggregated to form qi, the aggregate price for source i, again
through a delay τ b

i,l:

qi(t) =

L�
l=1

Rlipl(t − τ b
i,l) � rb(pl, τ

b
i,l) (2)

The prices qi can then be used to set the rate of source i,
xi, which completes the picture. The whole interconnection
is shown in Figure 1. The forward and backward delays can
be combined to yield the Round Trip Time (RTT) for each
source i :

τi = τf
i,l + τ b

i,l

The capacity of the link is assumed to be cl. The functions f
and g shown in Figure 1 are the source law and the link law
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TCP AQMẋi = fi(xi, qi, τi)

yl = rf(xi, τ
f
i,l)

yl

plqi

xi

qi = rb(pl, τ
b
i,l)

ṗl = gl(yl, pl, cl)

Figure 1: The Internet as an interconnection of sour-
ces and links through delays.

respectively. This setting is universal, and the only missing
blocks are the two control laws that describe how the ith
source reacts to the price signal qi that it receives

ẋi = fi(xi, qi, τi), (3)

and how the lth link reacts to the aggregate rate yl it ob-
serves

ṗl = gl(yl, pl, cl). (4)

Here fi models TCP algorithms (e.g. Reno or Vegas) and
gl models AQM algorithms (e.g. RED, REM).

In order to understand the meaning of the variables pl, qi,
let us consider the properties of the equilibrium of this sys-
tem, which we assume is given by the vector quantities
x∗, y∗, p∗, q∗. The framework we use will be based on convex
optimization. Firstly, we have the following relationships
from (1) and (2) at equilibrium:

y∗ = Rx∗, q∗ = RT p∗.

We now assume that as the aggregate price signal at equi-
librium q∗i increases, then the demanded transmission rate
at the source should decrease, i.e. the two are related by

x∗
i = Fi(q

∗
i ),

where Fi is a positive, strictly monotone decreasing function,
which is the solution of fi(x

∗
i , q∗i ) = 0 where fi is given by

Equation (3). Alternatively, one can think that the sources
have a certain utility if allowed a certain transmission rate,
the utility satisfying:

U ′
i(xi) = F−1

i (xi).

This relationship implies that Ui(xi) is a monotonically in-
creasing strictly concave function. Under these assumptions,
the equilibrium rate xi for each source solves

max
xi

Ui(xi) − xiq
∗
i (5)

which means that the sources are trying to maximize their
profit: maximize their utility, but at the same time minimize
the cost of having high rates; q∗i can be thought of as the
price per unit flow that the sources have to pay. Different
protocols correspond to different utility functions Ui, and to
different dynamic laws (3–4) that attempt, in a decentralized
way, to reach the appropriate equilibrium. For this reason
this framework allows comparability of different designs.

The role of prices is to coordinate the actions of individual
sources so as to align individual optimality with social opti-
mality, i.e., to ensure that the solution of (5) also solves the
network resource allocation problem

max
xi≥0

S�
i=1

Ui(xi)

s.t.

S�
i=1

Rlixi ≤ cl, ∀ l = 1, . . . , L, (6)

where the inequality constraint is the natural limitation that
the sum of all transmission rates through link l has to be
less than or equal to its capacity. The uniqueness of the
optimal solution to the above problem is guaranteed since
the Ui are strictly concave functions and the program is
convex. The above optimization problem cannot be solved
in a decentralized way, as the source rates are coupled in the
shared links through the inequality constraints and solving
for x∗ would require cooperation among possibly all sources.
To solve it in a distributed manner over a large network we
can decompose it into a primal problem that the sources
are trying to solve and a dual that the links are trying to
solve, regarding the sources xi as primal variables and the
prices set by the links pl as the dual variables. Specifically,
consider the Lagrangian for program (6):

L(x, p) =
�

i

Ui(xi) −
�

l

pl(yl − cl)

=
�

i

�
Ui(xi) − xi

�
l

Rlipl

�
+
�

l

plcl,

where pl ≥ 0. The dual problem can then be written as

min
pl≥0

max
xi≥0

�
i

�
Ui(xi) − xi

�
l

Rlipl

�
+
�

l

plcl.

By the properties of the dual solution and the fact that the
programs are convex, at the optimum p∗ the xi that maxi-
mizes the individual profit (5) is the same as the unique so-
lution to the network problem (6). If the equilibrium prices
p∗ are made to align with the Lagrange multipliers, the in-
dividual optima — computed in a decentralized fashion by
the sources — will align with the global optima of (6).

The dynamical system defined by (3–4) with delays ignored
aims to drive the system close to or exactly at the optimal
point (x∗, p∗), using well-known gradient algorithms. Af-
ter [8], it is customary to call ‘dual’ the congestion control
scheme with dynamics at the links but a static source law;
and ‘primal’ one with dynamics at the sources and a static
link law. If both source and link laws have dynamics, the
scheme is termed ‘primal-dual’.

Let us consider the dual case. The algorithm that will guar-
antee that these equilibrium prices are Lagrange multipliers,
is based on a gradient method:

ṗl(t) =

�
yl−cl

cl
if pl(t) > 0;

max{0, yl−cl
cl

} if pl(t) = 0.

� gl(yl, cl) (7)

The choice of these dynamics is key to the proof of scalable
functionality as we will see in section 5, and is a result of
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the fact that the gradient of the Lagrangian only depends on
aggregate rates yl. If the above equations are at equilibrium,
we have y∗l = cl for pl 6= 0 and so equilibrium prices are
indeed Lagrange multipliers. A similar approach can be used
to construct a primal algorithm, as explained in detail in [8].

The routing matrix R is assumed fixed and full row rank.
This means that there are no algebraic constraints between
link flows, i.e. they can vary independently by choice of
source flows xi. As a consequence, equilibrium prices are
uniquely determined.

3. ROBUST MODEL BUILDING
Having identified the framework in which TCP/AQM will
be analyzed, one has to develop models for the two mod-
ules: the sources and the links. Both consist of software
and hardware; inside hardware are uncertain devices con-
nected so as to provide the functionality hardware is meant
to have. Hardware response to software commands is there-
fore assumed instantaneous and is not modelled. On the
other hand software should be modelled in some detail, as it
defines the response of the routers and the sources in the net-
work. Fine scale, stochastic models for TCP and AQM can
be developed, which are usually simplified into determin-
istic delay differential models that are easier to work with.
For example, the first fluid model of Reno/RED was derived
from a stochastic model of throughput as a function of loss
rate and round-trip delay [16, 20]. From this, a set of de-
terministic delay differential equations were derived [18] and
linearized [6]. Let us outline the steps followed to achieve
this.

First, model the change in the window size dwi(t) according
to a Poisson process with a time varying rate λi(t) modelling
the packet loss Ni(t):

dwi(t) =
dt

τi(t)
− wi(t)

2
dNi(t),

λi(t) =
pi(t− τi)wi(t− τi)

τi(t− τi)

where pi is the packet marking/dropping probability and
wi/τi is the packet sending rate. This takes account of the
fact that the ACK received or the loss detected corresponds
to a packet which was sent one round trip time (RTT) ear-
lier, and comes delayed by some backward time delay. In
going from the stochastic to the deterministic model in [18],
the approximation E[wi(t)dNi(t)] ≈ E[wi(t)]E[dNi(t)] was
used which was supported both experimentally and theoret-
ically. It is important to stress that no further simplification
should be made on the delays as this usually leads to the
wrong conclusions, as we will see later. The final nonlinear
delay differential equation of TCP becomes

ẇi(t) =
1

τi(t− τi)
− wi(t)wi(t− τi)

2τi(t− τi)
qi(t− τi).

At the AQM side, the average queue length r(t) change and
instantaneous queue length b(t) for RED are modelled as:

ṙ(t) = αc(r(t)− b(t)), ḃ(t) =
X

i

wi(t)

τi(t)
− c, 0 < α < 1,

where c is the link capacity and α is a constant. The ag-
gregate window size at the link is the sum of the window
sizes at the sources after a forward trip time. Linearization
around equilibrium for N sources with homogeneous delays
gives:

ẇ(t) = − N

τ∗2c
(w(t) + w(t− τ∗))− τ∗c2

2N2
p(t− τ∗) (8)

ḃ(t) =
N

τ∗
w(t)− 1

τ∗
b(t) (9)

ṗ(t) = −αc (p(t)− ρb(t)) , (10)

where τ∗ is the round-trip time at equilibrium. ρ is an RED
parameter and we assume that RED is operating at the early
congestion phase.

Another model for TCP/RED, developed in [15] considers
a general multi-source multi-link model, where link prices
are considered as marking probabilities at each link and the
window size is updated directly according to aggregate link
prices at the source. If wi(t) is the window size of source
i at time t, in the congestion avoidance phase of Reno the
window update follows

ẇi(t) = xi(t−τi(t))(1−qi(t))
1

wi(t)
−xi(t−τi(t))qi(t)

wi(t)

2
.

(11)
The first term on the right corresponds to the fact that
the window size wi(t) is increased by 1/wi(t) by a frac-
tion of 1 − qi(t) when positive ACK is received, delayed
appropriately by τi(t). Similarly, the second term models
the multiplicative decrease effect of the window size due to
packet drop. The model of RED at the AQM side includes
modelling the instantaneous queue dynamics bl(t) of link l
at time t, the average queue length rl(t) and the marking
probability pl(t):

ḃl(t) = yl(t)− cl (12)

ṙl(t) = −αlcl(rl(t)− bl(t)) (13)

pl(t) = ρl(rl(t)− bl) (14)

where 0 < αl < 1 is constant, ρl, bl are RED parameters.
Here the RED marking mechanism is only described at the
bottleneck links where marking probability is strictly pos-
itive and RED works at its early random dropping phase.
One can show that if forward delay is ignored and a sin-
gle bottleneck used by homogeneous sources is considered,
the model in [15] can be simplified to the one in [6]. Equa-
tions (8), (11) correspond to the source law while Equations
(9–10) and (12–14) represent the link law, shown in Figure
1.

Control theory has developed a methodology for robust model
building: all assumptions made during the modelling process
are accounted for as some form of uncertainty in the model
description. Different types of uncertainty, either of a static
form (parametric) or of a dynamic form can be encapsulated
in this framework. With this methodology, the ‘details’ are
removed from the model yet their significance is accounted
for in an uncertain description that is easier to work with.
This is done by embedding the model in a set of models
parameterized in some way by the uncertain parameters.
These parameters are used to encapsulate approximations
and simplifications made during the modelling process, with
the price of some potential conservativeness. Failure to do so
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however may lead to the optimistically wrong conclusions,
the simplest being the problem of instability, although at
first it might not seem relevant to congestion control. In-
stability has a lot of effects. Jittering in the source rate and
delays can cause problems in short-lived flows, ‘mice’, that
are delay and loss sensitive. Predictability of the network
behavior in the response at a traffic demand is lost; indeed
a more natural response would be a stable convergence to
a window size without going into a limit cycle. Also, the
average throughput may be reduced as a result of the shape
of the limit cycle.

Example 1. Parametric uncertainty. As a motivat-
ing example, consider homogeneous sources sharing a single
bottleneck react to the aggregate price q and their current
rate x as follows:

ẋ = � − 2q − 3

2
x + qx (15)

where � is a parameter that results from modelling software
that is written at the sources end. Routers integrate excess
rate, i.e.

ṗ =
y(t)

c
− 1 ⇒ q̇ =

x(t − τ)

c
− 1. (16)

The value of � is not known exactly, but is believed to be
around 2.5, so we fix its value to 2.5. We require the system
to be stable for τ ∈ [0, τ∗). Linearization of the above system
about the equilibrium (x∗, q∗) = (c, 1.5c−�

c−2
) gives:

d

dt

�
δq
δx

�

=

�
0 0

c − 2 3−�
c−2

� �
δq
δx

�
+

�
0 1
0 0

� �
δq(t − τ)
δx(t − τ)

�

This linearization is stable for τ = 0 for � < 3 and c− 2 < 0
under the additional constraint that the equilibrium is in the
positive orthant which requires that � > 1.5c. The nominal
value of � = 2.5 implies stability for τ = 0, but we have
already said that this value was uncertain. Indeed, one can
see from the analysis that the system is unstable for � > 3.

Stability for τ = 0 is therefore a function of c and �. The fact
that we fixed � = 2.5 while we know that � is uncertain might
cause problems, as if it were allowed to vary in 2 ≤ � ≤ 3.25
then the system could go unstable. A way to avoid it is to
quantify the uncertainty in � as the model is constructed
from the software level. If 2 ≤ � ≤ 2.75 then stability of
the equilibrium can be proven for all possible values of �
i.e. the system is robustly stable. In some other cases the
uncertainty is of a more ‘dynamic’ nature. In this case a
different approach has to be followed.

Example 2. Dynamic Uncertainty. Suppose that we
have the same dynamics for the source as before, but the
queue dynamics are different:

ḃ = x(t − τ) − c

q̇ = −α(qc − b)

ẋ = � − 2q − 3

2
x + qx,

where α is an unknown positive parameter. The map from
b to q has worst-gain 1/c for all times, i.e. we can write:

� T

0

�
q2(t) − 1

c2
b2(t)

�
dt ≤ 0, ∀ T. (17)

Equation (17) is what is known as an Integral Quadratic
Constraint (IQC), and can be used to encapsulate the dy-
namics of q into the system description, giving:

ḃ = x(t − τ) − c

ẋ = � − 2q − 3

2
x + qx

0 ≥
� T

0

�
q2(t) − 1

c2
b2(t)

�
dt.

Tools for investigating the stability in the aforementioned
setting have been developed in [17], but can only be applied
to the linearized system. The same setting can be used to
cover linear time-invariant and time-varying uncertainties,
high order dynamics, periodic uncertainties, stiff dynamics,
time delays, nonlinearities, random noise, etc.

After a robust model has been constructed, design (or re-
design) of some of the parameters can be done in such a way
so as to make the system properties better. For example,
in the case of TCP/RED various models have been devel-
oped to simplify current TCP/AQM protocols [6, 22, 15]
all cast under the distributed unified framework developed
earlier, shown in Figure 1. These were constructed based
on fluid model descriptions that provide a full understand-
ing of equilibrium properties of general large-scale networks
under end-to-end control but also facilitate investigation of
the dynamical properties of the equilibrium, especially in the
presence of feedback delay [22, 23, 30, 11, 29, 1, 3]. Anal-
ysis of Equations (8–10) or (11–14) can lead to an appreci-
ation of the deficiencies of TCP/RED as the link capacity
and the RTT is increased. It also provides a framework for
determining values for the various RED parameters that in-
crease the stability margins of the system [6]. More detailed
TCP/RED model analysis reveals that stability is an in-
trinsic problem which cannot be completely fixed by tuning
parameters, and there is a trade-off between stability and
response speed. Various controllers, such as P and PI [6]
have been proposed. This is a very nice example of how a
mathematical analysis of a system allows precise statements
to be made about its properties. One might argue that the
model that was used is very crude; we have seen how IQCs
and parametric uncertainty can help keep track of unmod-
elled dynamics. Until recently, analysis of uncertain systems
was only possible when they are linearized; a framework for
nonlinear robust analysis has been developed, which will be
presented in section 5.

4. ANALYSIS PROCEDURES AND PITFALLS
After a robust model describing the modules comprising a
complex system is built, a systematic analysis procedure
is required to evaluate its properties. It has been argued
that the simplest model for network congestion control is in
terms of a deterministic flow model in the form of a delay-
differential equation. Any further simplification to an ordi-
nary differential equation description might be detrimental
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in the analysis procedure, and care has to be taken to avoid
this. In this section we will identify such and other pitfalls.

Analyzing the stability properties of systems in general is
a rather difficult task, in particular when considering non-
linear models. On the other hard, if one considers the lin-
earization of these models about some operating point, then
conclusions can be drawn more easily, but they are restricted
in some region around the equilibrium.

Example 3. Linear versus Nonlinear. Let us con-
sider the system described by Equation (17) whose lineariza-
tion about the equilibrium was analyzed in Example 1. Fig-
ure 2(a) shows what is called the phase-plane for ` = 2.5, τ =
0, c = 1 for the linearization. We see that under all initial
conditions all trajectories tend to the equilibrium. Figure
2(b) shows the full nonlinear system. The thicker line de-
notes a separatrix, i.e. a trajectory that separates the vector
field into two disjoint parts; trajectories on the right of this
separatrix can never reach the stable equilibrium. One could
be misled into concluding that the equilibrium is globally sta-
ble by looking at the linearization, (Figure 2(a)) where all
nonlinear effects have been removed and all trajectories tend
to the equilibrium, making the local picture global. At this
point we should note that for most TCP/AQM algorithms
the nonlinear equilibrium point is globally stable, especially
if they can be cast in the duality framework of [8]. The above
scenario is possible if care is not taken in the design.

In the case of the nonlinear system description, most analy-
sis methods concentrate in the construction of what is called
a Lyapunov function. Lyapunov functions are nothing but
energy-like functions for the system: Their minimum is at
the equilibrium, they are positive everywhere else, and their
time derivative along the system’s trajectories is non-increasing.
The task is to construct a Lyapunov function as shown in
Figure 2(b), that will provide an exact stability proof far
away from the equilibrium that linearization can never pro-
vide. The concept behind Lyapunov functions is very im-
portant. Level curves of Lyapunov functions, shown in Fig-
ure 2(b) provide ‘trapping regions’ that the flow can never
get out. Whereas simulation tries to follow the evolution of
the system when released from a particular initial condition,
the Lyapunov function constructs these nested regions which
restrict the flow of the system to within their boundaries.
ns-2 simulations can never present the true properties of the
system as they can never exhaust all initial conditions and
scenarios. The total energy for the system was always a very
good candidate for a Lyapunov function, but many systems
come from simplifications of higher order systems, and there
is no intuition on what the Lyapunov function should look
like. We will see in the next section tools for algorithmic
analysis of such systems with and without delays.

Delay-differential equations (i.e. models with τ 6= 0) can
also be analyzed through linearization and the construction
of what is called a Nyquist plot, as in the next example.

Example 4. Linear analysis with delay. Suppose ` =
2.5 and c = 1 in the model given by Equation (17), and take

Laplace transforms:

d

dt
δq(t) = δx(t− τ) ⇒ δq(s) =

e−sτ

s
δx(s) (18)

d

dt
δx(t) = −δq(t)− 1

2
δx(t) ⇒ δx(s) = − 1

(s + 0.5)
δq(s).

(19)

We can consider the frequency domain description as the in-
terconnection of two systems, shown in Figure 2(c), and use
a Nyquist argument to test for stability as τ increases [28].
See Figure 2(d) for more details. What we should also point
out is that appropriate scaling of the feedback gains by τ
allows stability that is independent of delay size, a feature
that was used in the development of scalable TCP/AQM al-
gorithms [22].

To analyze network congestion control for arbitrary net-
works with multiple delays one can use a generalization of
Nyquist’s criterion [29]. This graphical test allows scalabil-
ity, but only for the linearized versions of the full nonlinear
time-delay system. For nonlinear systems with delays it is
very difficult to draw conclusions on the stability properties.
A Lyapunov argument can also be used but the construc-
tion of the relevant Lyapunov functionals is far more difficult
than the un-delayed case. Yet designing a congestion con-
trol scheme ignoring the effect of delays can be problematic.
Let us give an example of the hazard that this can cause.

Example 5. The pitfall of ignoring delays. We pre-
sented in an earlier section a model for TCP/RED in which
the relationship between q, the queue size and p, the marking
probability is given by

q(s) =
Kme−τs

(T1s + 1)(T2s + 1)
p(s)

where s is a frequency domain variable, Km = (cτ)3

4N2 , T1 =
cτ2

2N
and T2 = τ are TCP parameters, and N the number of

active TCP sessions. The factor e−sτ accounts for the RTT.

A similar simple model can be constructed for RED as

p(s) =
1 + k1s

k2s
[qdem(s)− q(s)]−Khq(s)

where qdem(s) is the demanded queue size. Choosing the pa-
rameters k1, k2 and Kh one can hope to design schemes that
tend to stabilize the system and provide better performance.
One such attempt was the one followed in [5], which however
proceeded in the design by assuming that the term e−sτ is ab-
sent. A simulation for N = 60, τ = 0.22s c = 1250pkts/s,
Kh = 0.0014, k1 = 0.4 and k2 = 200, values that the au-
thors suggest, reveals a major pitfall: the design is unstable
when the term e−sτ is included, see Figure 3. The purpose
of redesigning the RED parameters was to achieve a faster
response by increasing the gains, but the only reason that
this was thought to be possible was the absence of the delay.

We now consider yet another pitfall that may cause prob-
lems: It relates to homogeneous versus heterogeneous delays
and adding ‘exotic’ nonlinearities to the system.
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Figure 2: Figures (a,b): Solid lines are trajectories originating from ‘o’, arrows denote vector field, equilibrium
is denoted by ‘+’. Figure (a) shows the linearization of the system given by Equation (17) about the
equilibrium for τ = 0. Figure (b) shows the phase plane of the full nonlinear system. The level curves of a
Lyapunov function that is used to prove stability of the equilibrium are shown dashed in Figure (b). Figures
(c,d): Figure (c) shows a block diagram for the system described by Equations (18–19). Figure (d) shows a
Nyquist plot, i.e. Real vs Imaginary part of the Loop Transfer Function (the product of the blocks shown in
Figure (c)) evaluated at jω as ω varies. If this plot encircles the −1 point, the closed loop system is unstable.
As τ is increased, this occurs at τ∗ = 0.5204. The Nyquist plot is shown for τ = 0.5.
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Figure 3: How the omission of delays can lead to a disastrous design. Figure (a) shows a block diagram for
the system as it was explained in Example 5. The dashed block corresponds to a delay of τ seconds. If the
delay is ignored, the system is stabilized by the control law, as a simulation shows in Figure (b). In Figure
(c), the same system is simulated with the delay block introduced, showing the deficiency in the design.
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Example 6. Homogeneous versus Heterogeneous sour-
ces. Consider two sources sharing the same link using FAST [23]
as their congestion control scheme. The equations are given
by:

ṗ =
xmax,1

c
e
− α1

τ1
p(t−τ1)

+
xmax,2

c
e
− α2

τ2
p(t−τ2) − 1

x1(t) = xmax,1e
− α1

τ1
p(t− τ1

2 )

x2(t) = xmax,2e
− α2

τ2
p(t− τ2

2 )

where xmax,1 and xmax,2 are parameters that are chosen so
that the equilibrium values x∗

1 = x∗
2 = 0.5 for p∗ = 1. The

linearization of the above system about the equilibrium is

ṗ = − α1

2τ1
p(t − τ1) − α2

2τ2
p(t − τ2)

for which the stability condition is αi < π
2
. We choose

α1 = α2 = 0.3; when the rates are far from their equilibrium
values this choice of αi will cause the system to react very
slowly, as shown in Figure 4(a) so we propose to increase
the value of αi according to the distance from the equilib-
rium, as shown in Figure 4(b). When the two delays are the
same, τ1 = τ2 = 1, the new scheme behaves better than the
old one. Nonetheless, when τ1 = 0.4, τ2 = 1, the system
engages in chattering between being ‘too fast’ and ‘too slow’,
as shown in Figure 4(c).

This shows that the switching behavior of systems may not
be predictable by linearization, and that designing for ho-
mogeneous sources may lead to problems for heterogeneous
ones.

In the preceding examples, we have seen that the behavior
of nonlinear systems far away from the equilibrium cannot
be predicted by linearization. In the penultimate section of
this paper, we will present recent advances in control theory
that can help analyze nonlinear systems directly.

5. ANALYSIS TOOLS FOR NONLINEAR
SYSTEMS

The above examples have demonstrated that an important
feature of network congestion control is that the feedback
mechanism involves delays that cannot be ignored. This
important modelling aspect comes with a price, as scalable
nonlinear analysis of such systems is quite difficult.

It was mentioned in the previous section that for nonlinear
analysis, most methodologies are based on Lyapunov func-
tions, but these are in general difficult to construct. In spe-
cific cases, for which the dynamics of the modules comprising
the network are judiciously chosen, it is possible to generate
scalable proofs for the functionality of the network, i.e. con-
struct Lyapunov functions whose properties scale with the
size of the network. However in general such an endeavor
would be intractable, in particular for systems which possess
dynamics that are not chosen in a way that would enable
this.

We now formulate more formally this concept and then pro-
ceed with a network example. Consider the equilibrium of
interest of the system dx

dt
= f(x) to be at the origin, i.e.

f(0) = 0. Then a Lyapunov function is given by the follow-
ing theorem:

Theorem 7. (Lyapunov) [10] Let x = 0 be an equilib-
rium point of the system dx

dt
= ẋ = f(x), x ∈ �

n (i.e.
f(0) = 0), and let D ⊂ �

n be a domain containing x = 0.
Let V be a continuously differentiable function defined on D
taking values in � such that:

V (0) = 0 and V (x) > 0 in D − {0} (20)

dV

dt
= V̇ =

∂V

∂x
f(x) ≤ 0 in D (21)

Then x = 0 is stable and V is termed a Lyapunov Function.
Moreover, if

V̇ < 0 in D

then x = 0 is asymptotically stable.

Condition (20) is the positive definiteness condition on V (x)
and condition (21) is the negative semidefiniteness of its time
derivative.

Example 8. Scalable properties using Lyapunov cer-
tificates In dual congestion control algorithms the links have
the dynamics given by (7). At the sources, we have the fol-
lowing static law:

xi = U ′−1
i (qi). (22)

Combining (1,2) and (7, 22) the system has the following
closed loop dynamics:

ṗl(t) =
S�

i=1

Rli

cl
U ′−1

i

�
L�

m=1

Rmipm(t − τf
i,l − τ b

i,m)

�
− 1

(23)
for pl > 0, and ṗl is equal to the positive projection of the
right hand side of (23) if pl = 0. The undelayed version of
this closed loop system is given by

ṗl(t) =

S�
i=1

Rli

cl
U ′−1

i

�
L�

m=1

Rmipm(t)

�
− 1 (24)

for pl > 0, and ṗl is equal to the positive projection of the
right hand side of (24) if pl = 0.

Theorem 9. For fixed full rank R, the (unique) equilib-
rium of (24) is asymptotically stable for all non-negative ini-
tial conditions.

Proof. Consider the function:

V (p) =

L�
l=1

(cl − y∗
l )pl +

S�
i=1

� qi

q∗
i

(x∗
i − U ′−1

i (Q))dQ.

where ∗ denote equilibrium (optimal) values. This function
is positive definite, as argued in [28], and has its minimum at
the equilibrium, which is unique under the rank assumption
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Figure 4: The new proposed design and the effects it has. Figure (a) shows the faster response of the proposed
system for two homogeneous sources sharing the same link. Figure (b) shows the scheduling scheme for αi

based on the distance of the rate from the equilibrium one. Figure (c) shows the same law under heterogeneous
sources — the system engages in chattering and oscillation.

on R. The time derivative of this Lyapunov function is:

dV

dt
=

L�
l=1

(cl − y∗
l )ṗl +

S�
i=1

(x∗
i − U ′−1

i (qi))q̇i

=
L�

l=1

(cl − y∗
l )ṗl +

S�
i=1

L�
l=1

(x∗
i − U ′−1

i (qi))Rliṗl

=
L�

l=1

�
(cl −

S�
i=1

RliU
′−1
i

�
L�

m=1

Rmipm

��
ṗl

= −
L�

l=1

clṗ
2
l

Now V̇ = 0 only when each link satisfies yl = cl or yl < cl

and pl = 0. Therefore the optimal solution to the general
optimization problem (6) is globally stable if the delays are
ignored, under the proposed dynamics at the links and sour-
ces.

The above theorem presented a scalable proof methodology
for establishing the functionality of arbitrary networks, but
ignored an important feature that as we saw in the earlier
section may be disastrous - the effect of delays. For the lin-
earization of the system with heterogeneous delays included,
the use of frequency domain methodologies leads to the fol-
lowing result:

Theorem 10. [21] Let Mi =
�L

l=1 Rli. The linearization
of the system given by (23) about the (unique) equilibrium
is asymptotically stable if

1

cl

S�
i=1

RliMiτi

|U ′′
i (x∗

i )|
<

π

2

In order to ensure stability for arbitrary topologies for the
nonlinear congestion control scheme with delays, we have
to use a time-domain methodology, i.e. a Lyapunov based
argument. The extension of Lyapunov’s theorem for time
delayed systems (described by Functional Differential Equa-
tions) requires the use of Lyapunov Functionals, the so-
called Lyapunov-Krasovskii functionals. In this paper we

will construct a Lyapunov-Krasovskii functional that scales
with the network size. The system to be analyzed is de-
scribed by Equation (23).

Recall that the utility function is a continuously differen-
tiable, non-decreasing, strictly concave function. Therefore
U ′′

i (xi) < 0 everywhere. Let γi be the lower bound for
|U ′′

i (xi)|, so that ��U ′′
i (xi)

�� ≥ γi > 0, ∀ i

We have the following result:

Theorem 11. The equilibrium of the system described by
(23) is asymptotically stable for arbitrary delays, provided
that

1

cl

S�
i=1

RliMiτi

γi
<

2

3

and the matrix R is an arbitrary full rank, fixed routing ma-
trix.

Proof. We will prove that the following system is stable:

ṗl(t) =

S�
i=1

Rli

cl
U ′−1

i

�
L�

m=1

Rmipm(t − τ i)

�
− 1 (25)

where τ i = maxl,m(τf
i,l + τ b

im
). Consider V1 given by

V1(p) =

L�
l=1

(cl − y∗
l )pl +

S�
i=1

� �S
i=1 Rlipl

�S
i=1 Rlip∗

l

(x∗
i − U ′−1

i (Q))dQ

V1 > 0 apart at the equilibrium, and is radially unbounded [8,
28], as we saw in the proof of the previous theorem. Now

V̇1(p) = −
L�

l=1

clṗlṗl,u = −
L�

l=1

clṗ
2
l −

L�
l=1

clṗl(ṗl,u − ṗl),

where ṗl,u corresponds to the undelayed version of (25),
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Equation (24). The second term of V̇1 is equal to:

−
L�

l=1

clṗl(ṗl,u − ṗl)

= −
L�

l=1

S�
i=1

Rliṗl

� 0

−τi

d

dt
U ′−1

i

�
L�

n=1

Rnipn(t + θ)

�
dθ

= −
L�

l=1

S�
i=1

L�
m=1

� 0

−τi

RliRmiṗlṗm(t + θ)

U ′′
i

�
U−1

i (
�L

n=1 Rnipn(t + θ))
�dθ

≤
L�

l=1

S�
i=1

L�
m=1

RliRmi

γi

� 0

−τi

|ṗl||ṗm(t + θ)|dθ

Putting everything together we have:

V̇1(p) ≤ −
L�

l=1

clṗ
2
l

+

L�
l=1

S�
i=1

L�
m=1

RliRmi

γi

� 0

−τi

|ṗl||ṗm(t + θ)|dθ.

Now let us concentrate on the second term.

L�
l=1

S�
i=1

L�
m=1

RliRmi

γi

� 0

−τi

|ṗl||ṗm(t + θ)|dθ

≤ 1

2

L�
l=1

S�
i=1

L�
m=1

RmiRliτ i

γi
ṗ2

l

+
1

2

L�
l=1

S�
i=1

L�
m=1

RmiRli

γi

� 0

−τi

ṗ2
m(t + θ)dθ,

where the formula 2ab ≤ a2 + b2 was used. This gives as an
estimate for V̇1:

V̇1(p) ≤ −
L�

l=1

clṗ
2
l

+
1

2

L�
l=1

S�
i=1

L�
m=1

RmiRliτ i

γi
ṗ2

l

+
1

2

L�
l=1

S�
i=1

L�
m=1

RmiRli

γi

� 0

−τi

ṗ2
m(t + θ)dθ.

We now introduce another term in the Lyapunov functional,

V2 =
1

2

L�
l=1

S�
i=1

L�
m=1

RmiRli

γi

� 0

−τi

� t

t+θ

ṗ2
m(ζ)dζdθ.

Then

V̇2 =
1

2

L�
l=1

S�
i=1

L�
m=1

RmiRliτ i

γi
ṗ2

l

−1

2

L�
l=1

S�
i=1

L�
m=1

RmiRli

γi

� 0

−τi

ṗ2
m(t + θ)dθ

Let V = V1 + V2. Then we get

V̇ ≤ −
L�

l=1

clṗ
2
l +

L�
l=1

S�
i=1

L�
m=1

RmiRliτ i

γi
ṗ2

l .

The coefficient of each term ṗ2
l is

− cl +

S�
i=1

RliMiτ i

γi

If

1

cl

S�
i=1

RliMiτ i

γi
< 1 (26)

for all l then V̇ ≤ 0, and the Lyapunov-Krasovskii condi-
tions of stability [4] are satisfied. A simple LaSalle type
argument [4] gives asymptotic stability. It is easy to see
that τ i < 3

2
τi, so the above condition becomes:

1

cl

S�
i=1

RliMiτi

γi
<

2

3
(27)

This completes the proof.

A general class of utility functions is [19]

Ui(xi) =

�
wi

x
1−αi
i
1−αi

, αi > 0, αi �= 1

wi log xi, αi = 1.

If xi < xmax,i, then the value of γ is

γ =
αiwi

x1+αi
max,i

(28)

U ′′
i (xi) is non-decreasing, so the value of γ is strictly smaller

than the value of |U ′′
i (x∗

i )|, which is part of the conservative-
ness between the nonlinear result and the linearization.

The above result provides a scalable condition for the sta-
bility of the whole network. The fact that such a condition
could be obtained in the first place is a result of the decen-
tralization scheme and the simple interactions of the TCP
and AQM parts of the algorithm, but is also a result of the
dynamics that were chosen. In dynamical systems terms, the
undelayed closed loop system is a weighted potential system,
i.e. there is a potential function V so that ṗl = −αl

∂V
∂pl

.

In the analysis of general networks and interactions, it may
be difficult to construct a scalable result of the form out-
lined above, as the construction of Lyapunov functions and
functionals is not intuitive. Moreover the dynamics of the
system that we wish to analyze may come from simplifi-
cations and modelling procedures that can be captured by
uncertainty as described in the earlier section. The need
for tools for systems analysis is evident, and we will now
introduce a way to construct these Lyapunov functions and
functionals algorithmically given a system model.

Let u ∈ �m denote the parameters, either static or dynamic
that appear in the system given by

ẋ = fx(x, u),

In this case we can construct Parameterized Lyapunov func-
tions to answer the more interesting systems analysis ques-
tions such as robust functionality, i.e. to test that a prop-
erty holds for a range of parameters. Their construction
is much harder than in the case in which the system does
not have any parameters, but if one such Lyapunov function
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was available, it would provide a short proof that the system
is stable for a range of parameters, something that simula-
tion cannot answer exactly. Both parametric uncertainty
and Integral quadratic constraints can be tested using an
extension of Lyapunov’s theorem. Usually the description
of such parameterized systems requires certain constraints
to be imposed. These can be of 3 types: Equality, Inequality
and Integral Quadratic Constraints. Let us denote them by

ai1(x, u) ≤ 0, for i1 = 1, ..., N1,

bi2(x, u) = 0, for i2 = 1, ..., N2,� T

0
ci3(x, u)dt ≤ 0,for i3 = 1, ..., N3, and ∀T ≥ 0.

Here x ∈ �n is the state of the system. We assume that the
ai1 ’s, bi2 ’s, and ci3 ’s are polynomial functions in (x, u), and
fx(x, u) is a vector of polynomial functions in (x, u) with no
singularity in D, where D ⊂ �

m+n is defined as

D = {(x, u) ∈ �m+n | ai1(x, u) ≤ 0, bi2(x, u) = 0, ∀i1, i2}.
Without loss of generality, it is assumed that fx(x, u) = 0
for x = 0 and u ∈ D0

u, where

D0
u = {u ∈ �m|(0, u) ∈ D}.

we have the following theorem as an extension of Lyapunov’s
stability theorem, and which can be used to prove that the
origin is a stable equilibrium of the above constrained sys-
tem.

Theorem 12. [25] Suppose that for the above system there
exist polynomial functions1 V (x), w(x, u), pi1(x, u), qi2(x, u),
and constants ri3 ≥ 0 such that

• V (x) is positive definite2 in a neighborhood of the ori-
gin.

• w(x, u) > 0 and pi1(x, u) ≥ 0 in D.

Then

− ∂V
∂x

fx(x, u) +
�

pi1(x, u)ai1(x, u)

+
�

qi2(x, u)bi2(x, u) +
�

ri3ci3(x, u) ≥ 0

will guarantee that the origin of the state space is a stable
equilibrium of the system.

The problem with constructing Lyapunov functions amounts
to checking the non-negativity conditions that appear in
Theorem 12 efficiently. This is an absolutely crucial ele-
ment in using Lyapunov methods for nonlinear dynamical
systems, but this task is known to be computationally hard,
when the order of the polynomial is greater than or equal to
4. In fact, there is no algorithm that will answer the question
‘Does this polynomial take only non-negative values when
evaluated at every point in its domain?’ efficiently. Altering
the question to ‘Can this polynomial be expressed as a sum
of other polynomials squared?’, i.e. trying to construct a
Sum of Squares (SOS) decomposition for it can be solved

1Although not written explicitly here, we assume that we
keep track of the indices.
2Strictly speaking, it is enough to require V to have a local
minimum at the origin.

efficiently. If a Sum of Squares decomposition is found, this
implies that the polynomial is non-negative. The converse
is not true: there are polynomials that are non-negative but
for which there is no Sum of Squares decomposition.

So how about using the Sum of Squares (SOS) decompo-
sition to check the two Lyapunov conditions? This idea is
indeed the step that opened up the way to an algorithmic
analysis of nonlinear systems. The framework of Theorem 12
allows parameterized Lyapunov functions to be constructed
in the same unified manner for systems that have paramet-
ric uncertainty or whose description involves IQCs, the use
of which is important for robust modelling as was discussed
in section 3. Hybrid and switching systems can also be dealt
with directly using the same framework. We can now obtain
information about the properties of the system further away
from the equilibrium, that no linearization procedure could
provide us. Constructing the Lyapunov function as a Sum
of Squares polynomial can be done using SOSTOOLS [26],
a software written for this purpose. The Lyapunov function
shown in Figure 2(b) was constructed algorithmically using
SOSTOOLS.

It has been argued that nonlinear deterministic time de-
lay models are the simplest models that one can have for
network congestion control schemes. To study the stability
of equilibria of time-delay systems, one can use Lyapunov-
Krasovskii (L-K) functionals, the natural extension of Lya-
punov functions as a tool for stability analysis for ODEs.
Can the SOS methodology that was used for nonlinear sys-
tems be extended to nonlinear time-delay systems? Indeed
this is possible. The functionals that we use have kernels
that are polynomials. The same methodology can be used
to analyze robust stability of nonlinear time delay systems
under parametric uncertainty [24].

Consider a time-delay system with a parameter p:

ż(t) = f(zt, p),

where zt(θ) = z(t + θ), θ ∈ [−τ, 0], f completely continuous
and p ∈ P given by

P = {p ∈ �m |qi(p) ≥ 0, i = 1, . . . , N} , (29)

i.e. the uncertainty set is captured by a set of inequalities.
The condition f(z0, p) = 0 is an equality constraint describ-
ing how the equilibrium z0 moves as p is allowed to change
in P .

Let x(t) = z(t)−z0, and transform the system into one with
an equilibrium at the origin:

ẋ(t) = f(xt + z0, p) (30)

0 = f(z0, p) (31)

The stability of this system can be handled directly using
the above tools by constructing a Parameter Dependent Lya-
punov functional. For example we can use:

V (xt, p) = a0(x(t), p) +

� 0

−τ

a1(θ, x(t), x(t + θ), p)dθ

+

� 0

−τ

� t

t+θ

b1(x(ζ), p)dζdθ.

Then we have the following conditions for stability:
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Proposition 13. Consider the system given by Equation
(30), where p ∈ P as defined by Equation (29). Suppose that
there exist polynomials a0(x(t), p), a1(θ, x(t), x(t+θ), p) and
b1(x(ζ), p) and a positive definite function ϕ(x(t)) such that
the following conditions hold:

1. a0(x(t), p)− ϕ(x(t)) ≥ 0, ∀ p ∈ P ,

2. a1(θ, x(t), x(t + θ), p) ≥ 0 ∀ θ ∈ [−τ, 0], p ∈ P ,

3. b1(x(ζ), p) ≥ 0 ∀ p ∈ P ,

4. a1(0, x(t), x(t), p)− a1(−τ, x(t), x(t− τ), p) + da0
dx(t)

f +

τb1(x(t), p) − τb1(x(t + θ), p) + τ ∂a1
∂x(t)

f − τ ∂a1
∂θ

≤ 0,

∀ θ ∈ [−τ, 0] and p ∈ P and when Equation (31) is
satisfied.

Then the equilibrium 0 of the system given by Equations (30–
31) is robustly globally uniformly stable for all p ∈ P and
for all delays in the interval [0, τ ].

To use this proposition, first construct the polynomials a0, a1

and b1 in SOSTOOLS. The function ϕ is constructed so as
to be positive definite. To impose the conditions θ ∈ [−τ, 0],
we use a process similar to the S-procedure and adjoin the
condition θ(θ+τ) ≤ 0 to the positivity and negativity condi-
tions. The equality constraints given by Equation (31) that
may arise during the transformation process can be adjoined
using appropriate polynomial multipliers [25]. More details
can be found in [24].

Then the four Sum of Squares conditions corresponding to
the four nonnegativity conditions in Proposition 13 will be
four constraints in a relevant Sum of Squares programme
which can be solved using SOSTOOLS [26].

Example 14. Nonlinear analysis with delay. Con-
sider the system that was developed in Example 1, given by
Equations (15–16), for c = 1 and ` = 2.5. We can construct
a Lyapunov functional of the form (32) for |q−1| < 0.6 and
|xt − 1| < 0.6 for τ = 0.48. Recall that the linearization
showed stability for τ = 0.5204.

We will now analyze the stability properties of a congestion
control scheme that is described in [23]. Although the vector
field is not polynomial, a change of variables is suggested
that renders it polynomial. Consider the network given by
Figure 5. The routing matrix R in this case is equal to:

R =

�
1 0 1
0 1 1

�
The network dynamics are given by

ṗl(t) =

SX
i=1

Rli

cl
xmax,ie

−αi
PL

m=1 Rmipm(t−τ
f
i,l
−τb

i,m)

Miτi −1, (32)

for pl > 0, and ṗl is equal to the positive projection of the
right hand side of (32) if pl = 0. Here Mi is an upper bound
on the number of bottleneck links that source i sees in its
path, αi are source gains, and xmax,i are source constants.

i = 1 i = 2

i = 3

l = 1 l = 2

Figure 5: A simple network.

We set α1 = α2 = α3 = α, M1 = M2 = 1, M3 = 2. To
impose fairness, we enforce x∗i = 1 so that xτ1

max,1x
τ2
max,2 =

x2τ3
max,3 and y01 = y02 = c1 = c2 = 2. The system equations

then become:

ṗ1 =
1

2
(xmax,1e

−αp1(t−τ1)
τ1

+xmax,3e
−α(p1(t−τ3)+p2(t−τ3))

2τ3 − 2)

ṗ2 =
1

2
(xmax,2e

−αp2(t−τ2)
τ2

+xmax,3e
−α(p1(t−τ3)+p2(t−τ3))

2τ3 − 2)

where τ3 = maxl,m τf
3,l + τ b

3,m for l, m = 1, 2. We now
perform the following change of variables:

z1 = x
τ1
2τ3
max,1e

−αp1(t)
2τ3 − 1, z2 = x

τ2
2τ3
max,2e

−αp2(t)
2τ3 − 1

to get

ż1 = − α

4τ3
[z1(t) + 1][(z1(t− τ1) + 1)

2τ3
τ1

+(z1(t− τ3) + 1)(z2(t− τ3) + 1)− 2]

ż2 = − α

4τ3
[z2(t) + 1][(z2(t− τ1) + 1)

2τ3
τ2

+(z1(t− τ3) + 1)(z2(t− τ3) + 1)− 2]

Consider in the case in which 2τ1 = 2τ2 = τ3 = 2τ . For
α = 1 we can construct a Lyapunov functional that proves
stability of the equilibrium.

We note that Equation (32) is a special case of (23) with

Ui(xi) =
τiMi

αi
xi

�
1− log

xi

xmax,i

�
We can now compare the result obtained in Theorem 11
with the SOS based result. We see that the condition in
Theorem 11 is more conservative; it gives the following two
conditions:

α1xmax,1 + α3xmax,3 <
4

3

α2xmax,2 + α3xmax,3 <
4

3

Therefore the best αi for which stability can be proven sat-
isfies αi < 2

3
(when x∗i = xmax,i = 1). The Lyapunov func-

tional we constructed using the Sum of Squares decompo-
sition holds locally, for fixed ratios of inhomogeneous time-
delays, but for αi = 1. Therefore we see the advantages and
disadvantages of the two methodologies. Although conser-
vative, the result of Theorem 11 is what ensures the func-
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tionality of the system for arbitrary network sizes; the con-
servativeness can be reduced if the topology of the network
is known exactly.

6. CONCLUSIONS
In this paper, we made the thesis that optimization based
decompositions of complex systems into interacting modules
facilitates analysis, comparability and verifiability of the de-
sired system properties. The modularity that such decompo-
sitions offer, and which at first endows the systems with an
apparent complexity should be taken advantage of. Aiming
for such decompositions is beneficial both for analysis and
design.

We also stressed that in any analysis procedure it is impor-
tant to construct robust models for the modules, as this will
capture the uncertainty in modelling and component param-
eters so that it be taken account in the design process. The
new tools that we developed in the previous section allow
us to analyze such systems even at the nonlinear level, and
expand the applicability of this methodology.

Complex systems and large scale networks will dominate
the future societies as technology advances. Designing such
systems is more than art based on intuition. It is widely ap-
preciated that network congestion control for the Internet is
probably the only complex system for which we have a good
understanding of the interaction of the various modules at
the TCP/AQM level. The system can be designed by resort-
ing to a solid methodological framework that provides the
desired functionality at equilibrium, based on an optimiza-
tion scheme; and the correct dynamics can be chosen for the
various modules to drive the system to the equilibrium —
the right choice of dynamics are key to the scalability of the
verification result.

The success in designing network congestion control schemes
for the Internet through a mathematical formulation which
enables understanding of its functionality and the limita-
tions that features such as delays pose, allows us to believe
that similar hierarchical structures can enable understand-
ing and design of other complex systems in the future. We
envision that solid methodological frameworks can be used
to formulate and solve the design problem this way and the
resulting system’s functionality can be proven in a struc-
tured way. Apart from the specific analysis results that one
can produce by hand, the algorithmic procedure we propose
can be used to analyze more complicated system descrip-
tions therefore increasing the set of model building blocks
that can be used in the construction of future mathematical
frameworks for complex system analysis.
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