
IEEE INFOCOM, JUNE 2002 1

Dynamics of TCP/RED and a Scalable Control
Steven H. Low Fernando Paganini Jiantao Wang Sachin Adlakha John C. Doyle

Abstract— We demonstrate that the dynamic behavior of queue
and average window is determined predominantly by the stability of
TCP/RED, not by AIMD probing nor noise traffic. We develop a gen-
eral multi-link multi-source model for TCP/RED and derive a local sta-
bility condition in the case of a single link with heterogeneous sources.
We validate our model with simulations and illustrate the stability re-
gion of TCP/RED. These results suggest that TCP/RED becomes un-
stable when delay increases, or more strikingly, when link capacity in-
creases. The analysis illustrates the difficulty of setting RED parame-
ters to stabilize TCP: they can be tuned to improve stability, but only
at the cost of large queues even when they are dynamically adjusted.
Finally, we present a simple distributed congestion control algorithm
that maintains stability for arbitrary network delay, capacity, load and
topology.

I. INTRODUCTION

It is well known that TCP/RED can oscillate wildly
and it is extremely hard to reduce the oscillation by tun-
ing RED parameters, e.g., [1], [2]. The additive-increase-
multiplicative-decrease (AIMD) strategy employed by TCP
Reno (and its variants such as NewReno and SACK) and
noise-like traffic that are not effectively controlled by TCP
no doubt contribute to this oscillation. Recent models e.g.,
[3], [4], imply however that oscillation is an inevitable out-
come of the protocol itself. We present more evidence to
support this view (Section II). We argue that TCP/RED os-
cillates not only because of its AIMD probing, and not only
because of noise traffic (e.g., short lived TCP connections),
but more fundamentally, it is due to instability1. We illus-
trate using ns-2 simulations that, after smoothing out the
AIMD component of the oscillation, the average behavior
can either be steady with small random fluctuations (when
the protocol is stable), or exhibit limit cycles of amplitude
much larger than random fluctuations (when it is unstable).
Moreover, this qualitative behavior persists even when a
large amount of noise traffic is introduced, and even when
sources have different delays. We conclude that it is stabil-
ity that largely determines the dynamics of TCP/RED.

This motivates the stability characterization of TCP/RED.
In Section III we develop a general nonlinear model of
TCP/RED. The equilibrium structure of this model is ana-
lyzed in [5] by interpreting various TCP/AQM as carrying
out distributed primal-dual algorithms over the Internet to
maximize aggregate source utility in the form of conges-
tion control. Here, we study local stability by linearizing
the model around the equilibrium. The linear model gen-
eralizes the single-link identical-source model of [6]. We
validate our model with simulation results and illustrate the

J. C. Doyle, S. H. Low and J. Wang are with California Institute of Tech-
nology; emails: {doyle,jiantao}@cds.caltech.edu, slow@caltech.edu. S.
Adlakha and F. Paganini are with University of California, Los Angeles;
emails: {paganini,sachin}@ee.ucla.edu

1By this, we mean that even if window is not adjusted on each acknowl-
edgment arrival or loss event, but is adjusted periodically by the same aver-
age amount AIMD would over a same period, the oscillation persists.

stability region of TCP/RED. We derive a sufficient stability
condition for the special case of a single link with hetero-
geneous sources. It shows that TCP/RED becomes unstable
when delay increases, or more strikingly, when link capacity
increases!

The gain introduced by TCP, in the case of a single link
shared by identical sources, is proportional to the square of
bandwidth-delay product and inversely proportional to the
number of sources. Such a high gain induces instability
when delay or capacity is high, and makes compensation by
RED extremely difficult. In particular, RED parameters can
be tuned to improve stability, but only at the cost of a large
queue, even when they are dynamically adjusted.

This suggests that the current protocol is ill-suited for fu-
ture networks where capacity will be large. In Section V we
present a simple congestion control algorithm, developed in
[7], that can be implemented in a decentralized manner by
sources and links, and that is scalable: it maintains linear sta-
bility for arbitrary delay, capacity, load and routing. More-
over, it achieves high network utilization in equilibrium with
negligible queues. We present preliminary simulations that
show these benefits can be achieved without sacrificing per-
formance such as transient response.

II. WHY DOES TCP/RED OSCILLATE?

What is the effect of AIMD, noise traffic, and heterogene-
ity of delays have on average window and instantaneous
queue? In this section, we show that their effect pales in
comparison with that of protocol instability.

We simulate in ns-2 a single bottleneck link with capacity
9 pkts/ms (constant packet size = 1000bytes). The link runs
RED with ECN marking in ‘byte’ mode (i.e., acknowledg-
ment packets are marked with negligible probability). The
RED parameters are max p = 0.1, min th = 50 pkts, max th
= 550 pkts, and weight for queue averaging α = 10−4. The
link is shared by 50 persistent FTP sources. We have run
simulations with both one-way and two-way traffic, and the
behavior is very similar. The results in Figures 1 and 2 are
for two-way traffic, and those in Figure 3 are for one-way
traffic. Of the measurements from live Internet in [8], 85%
have round trip times between 15-500ms. We perform sim-
ulations within this range of delays.

Figure 1 gives the result of two cases where connections
have identical round trip propagation delay and generate
traffic in both directions. Figure 1(a) shows an individual
window (light curve) and the average window (dark curve),
averaged over all 50 sources, both as a function of time.
They are typical traces when round trip propagation delay is
small (40ms in this case). Oscillations due to Reno’s AIMD
are prominent in the individual window, but disappear in the
average window. As one would expect, since the queue av-

IEEE INFOCOM, JUNE 2002 2

erages individual windows, it also displays a smooth trace
with small random fluctuations, as shown in Figure 1(b). We
consider the average behavior of the protocol stable (non-
oscillatory) in this case.

Figures 1(c) and (d) show the corresponding windows and
queue when round trip propagation delay is increased to
200ms. Not only does the individual window oscillate with
a larger amplitude, more importantly, its average displays a
deterministic limit cycle. This also shows up in the queue
trace. We say the protocol is in an unstable regime.

What is the effect of noise-like mice traffics that are not
effectively controlled by TCP/RED? To get a qualitative un-
derstanding, we add short http sources to the 50 persistent
bi-directional FTP connections. Each http source sends a
single-packet request to its destination, which then replies
with a file of size that is exponentially distributed with a
mean of 12 1KB-packets. After the source completely re-
ceives the data, it waits for a random time that is exponen-
tially distributed with a mean of 500 msec, and repeats the
process. Both the request and the response are carried over
TCP connections. Two sets of simulations are conducted, the
first with 60 http sources generating 10% noise (i.e., persis-
tent FTP sources occupied 90% of bottleneck link capacity),
and the second set with 180 http sources generating 30%
noise. The queue traces when propagation delay is 40ms
(stable) and 200ms (unstable), respectively, are shown in
Figures 2(a) and (b) for a noise intensity of 10%, and in Fig-
ure 2(c) and (d) for a noise intensity of 30%. The behavior
of the queue and average window (not shown here) is domi-
nated by the stability of the protocol, not by noise-like mice
traffic (compare with Figures 1(b) and (d)). In the stable
regime (40ms delay), the noise traffic increases the average
queue length slightly. This increases the marking probability
and reduces the average window of the FTP sources.

All our previous simulations are for sources with identi-
cal propagation delay. Will the dynamic behavior be very
different when sources have different delays? We repeat the
previous experiments, without noise, with 50 persistent uni-
directional connections having delays ranging from 40ms to
64ms at 1ms increment, with 2 sources to each delay value.
We study their dynamic behavior when all delays are scaled
up, or down, over a wide range. The behavior is qualita-
tively similar to the case of identical delay, with more severe
queue oscillation. Figure 3(a) shows the instantaneous queue
when the scaling factor is 0.3 (delays range from 0.3(40)ms
to 0.3(64)ms), with an average delay of 15.6ms, averaged
over all sources. Figure 3(b) shows the queue when the scal-
ing factor is 4, with an average delay of 208ms.

Instability causes three potential problems. First, it in-
creases jitters in source rate and delay and can be detrimen-
tal to some applications. Second, it subjects short-duration
connections (‘mice’), that are typically delay and loss sen-
sitive, to unnecessary delay and loss. Finally, it can lead to
under-utilization of network links if queues jump between
empty and full.

Hence it is protocol stability that largely determines
the dynamics of TCP/RED. We now characterize when

TCP/RED is stable.

III. DYNAMIC MODEL AND STABILITY

In this section we develop a model of TCP/RED and use
it to predict the onset of instability. We start with a nonlinear
model, make a few remarks about its equilibrium properties,
and then linearize the model around the equilibrium. We
validate our linear model with ns-2 simulations, and illus-
trate the stability region of TCP/RED. Finally we derive a
stability condition for the special case of a single link with
heterogeneous sources.

A. Nonlinear model of TCP/RED

A network is modeled as a set of L links (scarce resources)
with finite capacities c = (cl, l ∈ L). They are shared by a
set of N sources indexed by i in set I . Each source i uses a
set Li ⊆ L of links. The sets Li define an L × N routing
matrix

Rli =

{

1 if l ∈ Li

0 otherwise

Associated with each link l is its marking probability2

pl(t) at time t, and with each source s its window wi(t)
at time t. TCP Reno prescribes how wi(t) is adjusted and
AQM prescribes how pl(t) is updated. Together they form
a delayed feedback system and can be interpreted as carry-
ing out a distributed primal-dual algorithm to solve a welfare
maximization problem over the Internet [5], [9].

Define the round trip time τi(t) of source i at time t by:

τi(t) = di +
∑

l

Rli

bl(t)

cl

(1)

where di is the round trip propagation delay and bl(t) is the
backlog at link l at time t.3 Define source i’s rate xi(t) at
time t as:

xi(t) :=
wi(t)

τi(t)
(2)

The aggregate flow rate at link l is

yl(t) =
∑

i

Rlixi(t − τf
li(t)) (3)

where τf
li(t) is the forward delay from source i to link l.

The end-to-end marking probability observed at source i is
qi(t) = 1−

∏

l∈Li
(1−pl(t−τ b

li(t))) where τ b
li(t) is the back-

ward delay from link l to source i. We assume that pl(t) are
small for all t so that, approximately, the end-to-end proba-
bility is

qi(t) :=
∑

l

Rlipl(t − τ b
li(t)) (4)

2By ‘marking’, we mean either dropping a packet or setting an ECN (Ex-
plicit Congestion Notification) bit in the packet.

3This is generally not the round trip time experienced by a packet, which
visits different links in its path at different times and hence experiences
queueing delays of various links at different times. This expression however
sums the queueing delay of different links at the same time t.

IEEE INFOCOM, JUNE 2002 3

a sum of delayed link probabilities. The forward and back-
ward delays are related to the round trip time through:

τi(t) = τf
li(t) + τ b

li(t)

for all l ∈ Li.
We now model TCP Reno and RED. We focus on the

AIMD algorithm of TCP Reno (and its variants such as
NewReno and SACK). At time t, source i transmits at
rate xi(t) packets/sec; hence, it receives acknowledgments
at rate xi(t − τi(t)), assuming every packet is acknowl-
edged. A fraction (1 − qi(t)) of these acknowledgments are
positive, each incrementing the window wi(t) by 1/wi(t);
hence the window wi(t) increases, on average, at the rate of
xi(t− τi(t))(1 − qi(t))/wi(t). Similarly negative acknowl-
edgments are received at an average rate of xi(t−τi(t))qi(t),
each halving the window, and hence the window wi(t) de-
creases at a rate of xi(t − τi(t))qi(t)wi(t)/2. Hence, the
window evolves under Reno according to

ẇi(t) = xi(t − τi(t))(1 − qi(t))
1

wi(t)

− xi(t − τi(t))qi(t)
wi(t)

2
(5)

where qi(t) is given by (4).
To model RED, let bl(t) denote the instantaneous queue

length at time t that evolves according to, when bl(t) > 0,

ḃl(t) = yl(t) − cl (6)

where yl(t) is the flow rate given by (3) and cl is the link
capacity. Define the average queue length as rl(t). It is up-
dated according to:

ṙl(t) = −αlcl (rl(t) − bl(t)) (7)

for some constant 0 < αl < 1. Given the average queue
length rl(t), the marking probability is given by

pl(t) =

0 rl(t) ≤ bl

ρlrl(t) − ρlbl bl < rl(t) < bl

ηlrl(t) − (1 − 2pl) bl ≤ rl(t) < 2bl

1 rl(t) ≥ 2bl

(8)

where bl, bl, and pl are RED parameters, and

ρl :=
pl

bl − bl

and ηl :=
1 − pl

bl

In summary, TCP/RED is modeled by (5–8) and their in-
terconnection through the network is modeled by (3–4).

Remarks:
1. In [5], [9], we interpret the TCP/RED model (5–8) and
other TCP/AQM models as carrying out distributed primal-
dual algorithms to maximize aggregate source utility over
the Internet. We regard source rates xi(t) as primal vari-
ables iterated by TCP, and marking probabilities pl(t) as
dual variables (Lagrange multipliers) iterated by AQM. Dif-
ferent protocols correspond to different update rules and they

maximize different utility functions U . The utility function
of TCP Reno is derived to be:

Ui(xi) =

√
2

τi

tan−1

(

τixi√
2

)

whereas that of TCP Vegas [10] is:

Ui(xi) = α log xi

Given any network topology R, link capacities c, and TCP
utility Ui, we can determine any equilibrium properties of
interest by solving a simple convex program. These include
throughput, loss, delay, interaction of different TCP proto-
cols and fairness of their equilibrium rate allocation.
2. Many implementations of Reno, or its variants, halves its
window at most once in each round trip time (so does ns-2).
In this case, the multiplicative decrease term in (5) should be
replaced by −qi(t)wi(t)/2τi(t). For all simulations in this
paper, the marking probability is so small that the probability
of having multiple marks in a round trip time is negligible.
Hence the difference between the two models of multiplica-
tive decrease is negligible, as confirmed by the validation
simulations below.

B. Linear model of TCP/RED

We linearize the TCP/RED equations (5-8) to study its
stability around equilibrium. We make several simplifying
assumptions. First we assume that the routing matrix R has
full row rank so there is a unique equilibrium loss probability
vector p (Lagrange multiplier). Second we assume that only
bottleneck links, whose equilibrium marking probability is
strictly positive, are included in the model. Moreover we
assume that the system operates in the region bl < rl(t) <
bl, so that the marking probability is affine in the average
queue length, pl(t) = ρl(rl(t)− bl). Finally, we make a key
assumption on the time-varying round trip delay.

Round trip delay appears in two places: first, in the re-
lation between window wi(t) and rate xi(t), as expressed
in (2), and second, in the time argument of flow rate yl(t),
as expressed in (3), and the end-to-end marking probabil-
ity qi(t), as expressed in (4). Inclusion of instantaneous
queueing delay in the first place yields a qualitatively dif-
ferent model than if queueing delay is ignored or assumed
constant. It means that the queue is not an integrator but
has a more complicated dynamics; see (11) below. As the
proof of Theorem 2 shows, this dynamic is critical to the
stability of TCP/RED. The resulting linear model matches
simulations significantly better than if queueing delay is as-
sumed constant. Time-varying delay in the second place
makes linearization difficult, and we replace it by its (con-
stant) equilibrium value (including equilibrium queueing de-
lay). Hence, we use the time-varying delay (1) in (2), but ap-
proximate the delays τi(t), τf

li(t), τ b
li(t) by their equilibrium

values in (3) and (4).
With these assumptions, we linearize Reno/RED around

the unique equilibrium. From (5), Reno becomes:

ẇi(t) =

(

1 −
∑

l

Rlipl(t − τ b
li)

)

wi(t − τi)

τi(t − τi)

1

wi(t)

IEEE INFOCOM, JUNE 2002 4

− 1

2

∑

l

Rlipl(t − τ b
li)

wi(t − τi) wi(t)

τi(t − τi)

Linearization then yields (variables now denote perturba-
tions around the equilibrium):

ẇi(t) = − 1

τiq∗i

∑

l

Rlipl(t − τ b
li) − q∗i w∗

i

τi

wi(t)

where q∗i =
∑

l Rlip
∗

l is the equilibrium end-to-end proba-
bility, and w∗

i = x∗

i τi is the equilibrium window.
Around the equilibrium, the buffer process under RED

evolves according to:

ḃl(t) =
∑

l

Rli

wi(t − τf
li)

τi(t − τf
li)

− cl

=
∑

l

Rli

wi(t − τf
li)

di +
∑

k Rkibk(t − τf
li)/ck

− cl

Let τi = di +
∑

k Rkib
∗

k/ck be the equilibrium round trip
time (including queueing delay). Linearizing, we have (vari-
ables now denote perturbations around the equilibrium):

ḃl(t) =
∑

i

Rli

wi(t − τf
li)

τi

−
∑

k

∑

i

RliRki

w∗

i

τ2
i ck

bk(t − τf
li)

The second term above is ignored if we have neglected or
assumed constant the queueing delay in round trip time.
The double summation sums over all links k that share
any source i with link l. It says that the link dynamics in
the network is coupled through shared sources. The term
w∗

i

τick
bk(t − τf

li) is roughly the backlog at link k due to pack-
ets of source i, under FIFO queueing. Hence the backlog
bl(t) at link l decreases at a rate that is proportional to the
backlog of this shared source i at another link k. This is
because backlog in the path of source i reduces the rate at
which source i packets arrive at link l, decreasing bl(t).

Putting everything together, Reno/RED is described by, in
Laplace domain,

w(s) = −(sI + D1)
−1D2R

T
b (s)p(s)

p(s) = (sI + D3)
−1D4b(s)

b(s) = (sI + Rf (s)D5R
T D6)

−1Rf (s)D7w(s)

where the diagonal matrices are D1 = diag
(

q∗

i w∗

i

τi

)

, D2 =

diag
(

1
τiq

∗

i

)

, D3 = diag (αlcl), D4 = diag (αlclρl),

D5 = diag
(

w∗

i

τ2

i

)

, D6 = diag
(

1
cl

)

, D7 = diag
(

1
τi

)

, and

Rf (s) and Rb(s) are delayed forward and backward routing
matrices, defined as:

[Rf (s)]
li

=

{

e−τ
f

li
s if l ∈ Li

0 otherwise
(9)

[Rb(s)]li =

{

e−τb
lis if l ∈ Li

0 otherwise
(10)

This model generalizes the single-link identical-source
model of [4] to multiple links with heterogeneous sources.

C. Validation and stability region

We present a series of experiments to validate our linear
model when the system is stable or barely unstable, and to
illustrate numerically the stability region.

We consider a single link of capacity c pkts/ms shared by
N sources with identical round trip propagation delay d ms.
For N = 20, 30, . . . , 60 sources, capacity c = 8, 9, . . . , 15
pkts/ms, and propagation delay d = 50, 55, . . . , 100 ms, we
examine the Nyquist plot of the loop gain of the feedback
system (L(jω) in (11) below). For each (N, c) pair, we de-
termine the delay dm(N, c), at 5ms increment, at which the
smallest intercept of the Nyquist plot with the real axis is
closest to −1. This is the delay at which the system (N, c)
transits from stability to instability according to the linear
model. For this delay, we compute the critical frequency
fm(N, c) at which the phase of L(jω) is −π. Note that the
computation of L(jω) requires equilibrium round trip time
τ , the sum of propagation delay dm(N, c) and equilibrium
queueing delay. The queueing delay is calculated from the
duality model [5]. Hence, for each (N, c) pair that becomes
barely unstable at a delay between 50ms and 100ms, we ob-
tain the critical (propagation) delay dm(N, c) and the criti-
cal frequency fm(N, c) from the analytical model. For all
experiments, we have fixed the parameters at α = 10−4,
ρ = 0.1/(540− 40) = 0.0002, and β = 0.5.

We repeat these experiments in ns-2, using persistent FTP
sources and RED with ECN marking. The RED parameters
are (0.1, 40pkts, 540pkts, 10−4), corresponding to the α and
ρ values in the model. For each (N, c) pair, we examine
the queue and window trajectories to determine the critical
delay dns(N, c) when the system transits from stability to
instability. We measure the critical frequency fns(N, c), the
fundamental frequency of queue oscillation, from the FFT
of the queue trajectory. Thus, corresponding to the linear
model, we obtain the critical delay dns(N, c) and frequency
fns(N, c) from simulations.

We compare model prediction with simulation. Figure
4(a) plots the critical delay dns(N, c) from ns-2 simula-
tions versus the critical delay dm(N, c) computed from the
linear model. Each data point corresponds to a particular
(N, c) pair. The dashed line is where all points should lie if
the linear model agrees perfectly with the simulation. Fig-
ure 4(b) gives the corresponding plot for critical frequencies
fns(N, c) versus fm(N, c). The agreement between model
and simulation seems quite reasonable (recall that delay val-
ues have a resolution of 5ms).

Consider a static link model where marking probability is
a function of link flow rate:

pl(t) = fl(yl(t))

Then the linearized model is (variables now are perturba-
tions)

pl(t) = f ′

l (y
∗

l) yl(t)

IEEE INFOCOM, JUNE 2002 5

where f ′

l (y
∗

l) is the derivative of fl evaluated at equilibrium.
Also shown in Figure 4(b) are critical frequency predicted
from this static-link model (with f ′

l (y
∗

l) = ρ, this does not
affect the critical frequency), using the same Nyquist plot
method described above. It shows that queue dynamics is
significant at the time-scale of interest.

Figure 4(c) illustrates the stability region implied by the
linear model. For each N , it plots the critical delay dm(N, c)
versus capacity c. The curve separates stable (below) from
unstable regions (above). The negative slope shows that
TCP/RED becomes unstable when delay or capacity is large.
As N increases, the stability region expands, i.e., small load
induces instability. Intuitively, a larger delay or capacity, or a
smaller load, leads to a larger equilibrium window; this con-
firms the folklore that TCP behaves poorly at large window
size.

D. Stability: single-link heterogeneous sources

We now characterize the stability region in the case of
a single link with N heterogeneous sources. Specializing
the linear model of the last subsection to this case, writing
forward delay as a fraction β ∈ (0, 1) of round trip time,
τf
i = βτi, and dropping link subscript l, we obtain the loop

gain as

L(s) =
∑

i

1

τip∗(τis + p∗w∗

i)
· αcρ

s + αc
·

1

s + 1
c

∑

n

x∗

n

τn
e−βτns

· e−τis (11)

The first term on the right-hand side describes TCP dynam-
ics, the second term RED averaging, the third term buffer
process, and the last term network delay. The special case
where all sources have identical round trip times, τi = τ ,
and forward delays are zero, β = 0, is analyzed in [4].
They provide sufficient conditions for closed-loop stability
and use them to tune RED parameters α and ρ.

We start with a lemma that collects some equilibrium
properties we use below. It can be proved directly from
the fixed point of (5-8); or see [5]. Let τ := maxi τi,

τ := mini τi and τ̂ :=
(

∑

i
1
τi

)−1

.

Lemma 1: Let p∗ be the equilibrium loss probability, w∗

i

and x∗

i be the equilibrium window and rate respectively.
Then p∗ = 2/(2 + (cτ̂)2), w∗

i = cτ̂ for all sources i,
x∗

i = w∗

i /τi and
∑

i x∗

i /c = 1.

Let

θ0 := arctan
π(1 − β)

2β
∈
(

0,
π

2

)

(12)

hred(v, θ) :=
e−j(v+θ)

v(jv + αcτ)(jv + p∗w∗

1)
,

0 ≤ θ ≤ π − θ0 (13)

We will show that the Nyquist plot of hred(v, θ) at θ = π −
θ0 determines the stability of TCP/RED. Let v0 be the angle
at which the phase of hred(v, π − θ0) = −π.

Theorem 2: Assume the equilibrium window w∗

i ≥
√

2.
Then the closed-loop system described by (11) is stable if

c3τ 3 · |hred(v0, π − θ0)| ≤ 1 − β

αρ

where τ := maxi τi.

Proof (Sketch). The closed-loop system is stable if L(s) does
not pass through (−1, 0) in the complex plane as s takes
value in the right-half plane. To show this, re-write (11) as

L(s) =
c2αρ

p∗

∑

i

w∗

i /τi

c

zi(s)

w∗

i

where

zi(s) =
e−τis

(s + αc)(τis + p∗w∗

i)
· 1

(s +
∑

n

x∗

n

cτn
e−βτns)

(14)

Lemma 1 implies that

L(s) =
cαρ

τ̂p∗

∑

i

x∗

i

c
zi(s) (15)

i.e., L(s) lies in the convex hull defined by the N points
zi(s) in the complex plane. We will prove that this convex
hull is bounded away from (−1, 0), in two steps.

First, by bounding the magnitude and phase of the last
term in (14), we can show that

L(jω) ∈ τ2cαρ

(1 − β)τ̂ p∗
· co {hred(v, θ)

: v ≥ 0, 0 ≤ θ ≤ π − θ0} (16)

i.e., we have embedded the convex hull defined by (14) in
the larger convex hull of hred(v, θ) defined in (13).

We then show that the hypothesis of the theorem bounds
this set away from (−1, 0). Note that the trajectory of
hred(v, θ) is the curve

C(v) :=
e−jv

v(jv + αcτ)(jv + p∗w∗

1)

rotated by θ in the negative direction. Since the magnitude
|C(v)| is decreasing in v, the left boundary of the convex
hull in (16) is determined by hred(v, θ) at θ = π − θ0. By
examining the curvature of the plane curve hred(v, π − θ0)
as v varies from 0 to +∞ [11], it can be shown that the
boundary of this set crosses the real axis at |hred(v0, π−θ0)|.
Hence L(jω) will not pass through (−1, 0) if

τ2cαρ

(1 − β)τ̂ p∗
· |hred(v0, π − θ0)| < 1

This condition can then be shown to hold under the hypoth-
esis of the theorem.

The idea of bounding the Nyquist plot of L(jω) in the con-
vex hull of hred(v, θ) is inspired by the proof in [12] of a
different algorithm.

IEEE INFOCOM, JUNE 2002 6

IV. RED PARAMETER SETTING

The parameters α ∈ (0, 1] and ρ > 0 on the RHS of the
stability condition in Theorem 2 are the weight in RED’s
exponential averaging of queue length and the slope of the
marking probability, respectively. For stability, their prod-
uct should be small. A small α leads to a sluggish response
because information on instantaneous queue length is incor-
porated into the feedback very slowly. A small ρ implies a
large delay: it can be shown that the average queue length
r in equilibrium is r = bl + 2/ρ(2 + (cτ̂)2). Indeed, when
the sources are identical, τ = τ = τ = τ̂N . The LHS
of the stability condition becomes c3τ3

2N
|h|. It suggests that

TCP/RED becomes unstable when delay τ or capacity c in-
creases, confirming the simulation results in the last subsec-
tion. Roughly, when c doubles, the equilibrium rate dou-
bles, and hence window is halved with twice the magnitude
at twice the frequency, resulting in a quadratic increase in
control gain and pushing the system into instability.

It is suggested in [15] that the RED parameter max p be
dynamically adjusted: reduce max p as N decreases and
raise it otherwise. Raising max p, or reducing max th -
min th, is equivalent to increasing ρ (= max p/(max th-
min th)) in the direction consistent with the stability con-
dition in Theorem 2. Theorem 2 sets an upper bound on ρ,
given N, c, τ (and α), and hence a lower bound on equilib-
rium queue length, to ensure stability. Adapting RED pa-
rameters cannot prevent the inevitable choice between sta-
bility and performance: either ρ is set small to stabilize the
queue, around a large value, or, alternatively, it is set large to
reduce the queue, at the expense of violent oscillation.

The same stability analysis can also be applied to other
AQMs, such as Virtual Queue [16], [17], [18] and REM/PI
[19], [6], and clarifies the role of AQM. The stability proof
relies on bounding a set of the form

K · co{h(v, θ)}

to the right of (−1, 0). The gain K and the trajectory h
depend on TCP as well as AQM. For instance, for the case
of a single link with capacity c shared by N identical sources
with delay τ , TCP and network delay contribute a factor

htcp =
e−jv

jv + p∗w∗

1

to the trajectory h and a factor

Ktcp =
c2τ2

2N
(17)

to the gain K, assuming equilibrium window is large so that
p∗ = 2/w2

i = 2N/cτ . This high gain (17) is mainly re-
sponsible for instability at high delay, high capacity or low
load. AQM compensates for these effects by shaping h and
reducing K. With RED, for instance,

h(v, θ) =
1

jv + αcτ

e−jθ

v
· htcp

K =
cταρ

1 − β
· Ktcp

The first term in h is due to RED averaging, the second term
is due to queue dynamics that also bounds θ ≤ π−θ0. Hence
both the queue and RED add phase lag to h. More impor-
tantly, RED adds another cτ to the gain K, necessitating a
small αρ for stability and leading to sluggish response and
large equilibrium queue. The factor τ/(1 − β) in K comes
from the queue.

V. A SCALABLE CONTROL

Measurements in [8] shows that delay is still large in the
current Internet (85% of the round trip time measurements
range in 15–500 ms). The results in the previous sections
suggest that the current protocol may be ill-suited in such
an environment. Moreover, the situation will become worse
in the future where network capacity will be large. It also
seems difficult to design effective AQM to compensate for
the high gain introduced by TCP. In this section we describe
a protocol, developed in [7], that can be implemented in a
decentralized way by sources and links, and that is scalable:
it maintains linear stability for arbitrary delay, capacity, load
and routing. Moreover, it achieves high network utilization
in equilibrium with small queue. These requirements impose
certain constraints on the linearized dynamics: integration at
links, and conditions on the gain at sources and links.

A. Algorithm

We summarize the congestion control algorithm of [7].
It consists of a static source algorithm and a first-order dy-
namic link algorithm. The key idea is to compensate for de-
lay at sources by scaling down the gain on rates by their indi-
vidual round trip times, and to compensate for loop gain in-
troduced by capacity and routing by scaling down the control
gain at links by their capacities and scaling it up at sources
by their current rates. In other words, a source reacts more
slowly if its round trip delay is large or if its rate is small;
a link updates its congestion measure (called ‘price’) more
slowly if it has a larger capacity. Note that network delay is
the only open-loop parameter not under our control, and it
should set the time-scale of the system response.

Consider the network model described in Section III-A.
Let pl(t) be the price at link l at time t and cl be a virtual
capacity that is strictly less than real link capacity. Each
link l adjusts its price using the aggregate input rate yl(t) =
∑

s Rlsxs(t):

ṗl(t) =

{ yl−cl

cl
if pl > 0;

max{0, yl−cl

cl
} if pl(t) = 0

(18)

Therefore prices integrate excess capacity in a normalized
way, and are saturated to be always non-negative. At equi-
librium, bottlenecks with nonzero price will have y∗

l = cl,
giving high utilization. Non-bottlenecks with y∗

l < cl will
have zero price. Since cl is less than real capacity, queue is
negligible in equilibrium. If cl were the real capacity, pl(t)
would be the real queueing delay, a congestion signal used
in TCP Vegas [9].

Let xi(t) be the rate of source i at time t, τi its round trip
time (assumed constant), and Mi the number of congested

IEEE INFOCOM, JUNE 2002 7

links in its path (or an upper bound). Given aggregate price
qi(t) =

∑

l Rlipl(t), source i sets its rate to be exponential
in qi(t):

xi(t) = xmax,i e
−αiqi(t)

Miτi (19)

Here xmax,i is a maximum rate parameter, and α ∈ (0, 1).
The utility function corresponding to the source control is

Ui(x) =
Miτi

αi

x

[

1 − log

(

x

xmax,i

)]

, for x ≤ xmax,i;

Suppose the routing matrix R has full row rank. Then
there is a unique equilibrium rate and price vector (x∗, p∗).
The linearized system around the equilibrium is described
by (variables now denote perturbation):

ṗl(t) =
yl(t)

cl

, for all l (20)

ẋi(t) = −αix
∗

i

Miτi

, for all s (21)

where the source rates x(t) and link prices p(t) are intercon-
nected by the delayed routing matrices defined in (9–10).

The following theorem, proved in [7], guarantees the sta-
bility of the algorithm when the network scales up arbitrarily
in delay, capacity and load.

Theorem 3 ([7]) Suppose all links included in R are bot-
tlenecks, i.e., c = Rx∗ in equilibrium, and R has full row
rank. Then the closed-loop system described by (20–21) and
(9–10) is linearly stable for arbitrary delays τi and link ca-
pacities cl.

B. Implementation and performance

A simple way to implement the link algorithm (18) is
to maintain a “virtual queue” counter that is incremented
with received packets and decremented at the virtual capac-
ity rate. Then prices are obtained by dividing this counter by
the virtual capacity.

Sources measure their round-trip time τi. Since the target
state is with empty queues, at equilibrium, τi is the propa-
gation delay; it is therefore recommended to use an estimate
of di (typically the minimum observed round-trip time) in
source update (19), as is done in Vegas. This avoids the pos-
sibility that temporary excursions of the real queue would
have a destabilizing effect via the round trip time. Also,
sources must receive two parameters from the network: the
aggregate price qi, and the number Mi of bottlenecks. To
communicate qi, the technique of random exponential mark-
ing [19] can be used. Here, a packet would be marked at each
link l with probability 1−φ−pl , φ > 1. Assuming indepen-
dence, the overall probability that a packet from source i gets
marked is 1 − φ−qi , and therefore qi can be estimated from
marking statistics. This requires the knowledge of φ which
is presumably a global constant set a priori. Regarding Mi,
in the simplest implementation one would simply employ an
upper bound.

A preliminary packet level implementation is done using
parallel simulator Parsec [20]. The simulation includes win-
dow management, link queueing and delay, but at this point
does not include marking; prices are communicated as float-
ing point numbers. We simulate a single link for a wide
range of N, c, d with the same parameters as those in Fig-
ure 1. Figure 5 shows the individual window and queue: as
expected, both the individual window and queue converge
regardless of delay. Longer delay sets a larger time-scale for
the closed loop behavior.

At this point one might wonder whether the stability of
this protocol has been obtained at the expense of perfor-
mance, i.e. by making the time-response very slow. How-
ever a comparison with Figure 1 shows this is not the case.
Indeed, both Reno and the new protocol require here about
50 round-trip times to reach steady state. For instance, in the
case of a 200ms delay, it takes about 10 seconds for Reno to
reach its limit cycle, and the same amount of time for our
protocol to reach equilibrium with an empty queue.

VI. CONCLUSION

We have presented simulation results to demonstrate that
it is protocol stability more than other factors that determines
the dynamics of TCP/RED. We have developed a multi-link
multi-source model that can be used to study the stability of
general TCP/AQM. We have presented a sufficient stability
condition for the case of a single link with heterogeneous
sources, and illustrated the form of TCP/RED’s stability re-
gion. It implies that TCP/RED becomes unstable when the
network scales up in delay or capacity. Our analysis indi-
cates the role, and the difficulty, of RED in stabilizing TCP.
We have described a new distributed algorithm that main-
tains local stability for arbitrary delay, capacity, load and
routing, and presented preliminary simulation results to il-
lustrate its behavior. As future work, we are developing a
prototype of this algorithm and conduct a comprehensive
performance comparison with the current protocol.

REFERENCES

[1] Martin May, Thomas Bonald, and Jean-Chrysostome Bolot, “Analytic
evaluation of RED performance,” in Proceedings of IEEE Infocom,
March 2000.

[2] M. Christiansen, K. Jeffay, D. Ott, and F. D. Smith, “Tuning RED for
web traffic,” in Proceedings of ACM Sigcomm, 2000.

[3] Victor Firoiu and Marty Borden, “A study of active queue manage-
ment for congestion control,” in Proceedings of IEEE Infocom, March
2000.

[4] Chris Hollot, Vishal Misra, Don Towsley, and Wei-Bo Gong, “A con-
trol theoretic analysis of RED,” in Proceedings of IEEE Infocom,
April 2001, http://www-net.cs.umass.edu/papers/
papers.html.

[5] Steven H. Low, “A duality model of TCP flow controls,” in Pro-
ceedings of ITC Specialist Seminar on IP Traffic Measurement, Mod-
eling and Management, September 18-20 2000, http://netlab.
caltech.edu.

[6] Chris Hollot, Vishal Misra, Don Towsley, and Wei-Bo Gong, “On de-
signing improved controllers for AQM routers supporting TCP flows,”
in Proceedings of IEEE Infocom, April 2001, http://www-net.
cs.umass.edu/papers/papers.html.

[7] Fernando Paganini, John C. Doyle, and Steven H. Low, “Scal-
able laws for stable network congestion control,” in Proceedings
of Conference on Decision and Control, December 2001, http:
//www.ee.ucla.edu/˜paganini.

IEEE INFOCOM, JUNE 2002 8

[8] Mark Allman, “A web server’s view of the transport layer,” ACM
Computer Communication Review, vol. 30, no. 5, October 2000.

[9] Steven H. Low, Larry Peterson, and Limin Wang, “Understanding
Vegas: a duality model,” J. of ACM, to appear, 2002, http://
netlab.caltech.edu/pub.html.

[10] Lawrence S. Brakmo and Larry L. Peterson, “TCP Vegas: end
to end congestion avoidance on a global Internet,” IEEE Journal
on Selected Areas in Communications, vol. 13, no. 8, pp. 1465–80,
October 1995, http://cs.princeton.edu/nsg/papers/
jsac-vegas.ps.

[11] Barrett O’Neill, Elementary Differential Geometry, Academic Press,
1966.

[12] Glenn Vinnicombe, “On the stability of end-to-end congestion con-
trol for the Internet,” Tech. Rep., Cambridge Univiversity, CUED/F-
INFENG/TR.398, December 2000.

[13] R. Johari and D Tan, “End-to-end congestion control for the internet:
Delays and stability,” Tech. Rep., 2000, Cambridge Univ. Statistical
Laboratory Research Report 2000-2.

[14] L. Massoulie, “Stability of distributed congestion control with het-
erogeneous feedback delays,” Tech. Rep., Microsoft Research, Cam-
bridge UK, TR 2000-111, 2000.

[15] W. Feng, D. Kandlur, D. Saha, and K. Shin, “A self–
configuring RED gateway,” in Proceedings of INFOCOM’99, March
1999, http://www.eecs.umich.edu/˜wuchang/work/
infocom99.ps.Z.

[16] R. J. Gibbens and F. P. Kelly, “Resource pricing and the evolution of
congestion control,” Automatica, vol. 35, 1999.

[17] Srisankar Kunniyur and R. Srikant, “End–to–end congestion con-
trol schemes: utility functions, random losses and ECN marks,”
in Proceedings of IEEE Infocom, March 2000, http://www.
ieee-infocom.org/2000/papers/401.ps.

[18] Srisankar Kunniyur and R. Srikant, “A time–scale decomposition ap-
proach to adaptive ECN marking,” in Proceedings of IEEE Infocom,
April 2001, http://comm.csl.uiuc.edu:80/˜srikant/
pub.html.

[19] Sanjeewa Athuraliya, Victor H. Li, Steven H. Low, and Qinghe Yin,
“REM: active queue management,” IEEE Network, May/June 2001,
Extended version in Proceedings of ITC17, Salvador, Brazil, Septem-
ber 2001. http://netlab.caltech.edu.

[20] “Parallel simulation environment for complex systems,” http://
pcl.cs.ucla.edu/projects/parsec/.

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

W
ind

ow
(p

kts
)

time(s)

individual window

average window

(a) Window (delay = 40ms)

0 5 10 15 20 25 30 35 40
0

100

200

300

400

500

600

700

800

In
sta

ne
ou

s q
ue

ue
(m

s)
time(s)

(b) Queue (delay = 40ms)

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

140

W
ind

ow
(p

kts
)

time(s)

individual window

average window

(c) Window (delay = 200ms)

0 5 10 15 20 25 30 35 40
0

100

200

300

400

500

600

700

800

In
sta

ne
ou

s q
ue

ue
(m

s)

time(s)

(d) Queue (delay = 200ms)

Fig. 1. Window and queue traces without noise traffic. Simulation param-
eters: 50 sources, capacity = 9 pkts/ms, RED = (0.1, 50, 550, 10−4),
marking with ‘byte’ mode; two-way traffic.

IEEE INFOCOM, JUNE 2002 9

0 5 10 15 20 25 30 35 40
0

100

200

300

400

500

600

700

800

In
sta

ne
ou

s q
ue

ue
 (p

kts
)

time (s)

(a) Queue (delay = 40ms, 10% noise)

0 5 10 15 20 25 30 35 40
0

100

200

300

400

500

600

700

800

In
sta

ne
ou

s q
ue

ue
 (p

kts
)

time(s)

(b) Queue (delay = 200ms, 10% noise)

0 5 10 15 20 25 30 35 40
0

100

200

300

400

500

600

700

800

In
sta

ne
ou

s q
ue

ue
 (p

kts
)

time(s)

(c) Queue (delay = 40ms, 30% noise)

0 5 10 15 20 25 30 35 40
0

100

200

300

400

500

600

700

800

In
sta

ne
ou

s q
ue

ue
 (p

kts
)

time(s)

(d) Queue (delay = 200ms, 30% noise)

Fig. 2. Queue traces with noise traffic. Simulation parameters: 50 sources,
capacity = 9 pkts/ms, RED = (0.1, 50, 550, 10−4), marking with ‘byte’
mode; two-way traffic.

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

time (sec)

Instantaneous queue (pkts)

ins
ta

nt
an

eo
us

 q
ue

ue
 (p

kts
)

(a) Queue (delays from 12ms to 19ms)

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

time (sec)

Instantaneous queue (pkts)

ins
ta

nt
an

eo
us

 q
ue

ue
 (p

kts
)

(b) Queue (delays from 160ms to 254ms)

Fig. 3. Queue traces with heterogeneous delays. Simulation parameters:
50 sources, capacity = 9 pkts/ms, RED = (0.1, 50, 550, 10−4), marking
with ‘byte’ mode; one-way traffic.

IEEE INFOCOM, JUNE 2002 10

50 55 60 65 70 75 80 85 90 95 100
50

55

60

65

70

75

80

85

90

95

100
Round trip propagation delay at critical frequency (ms)

delay (NS)

de
la

y
(m

od
el

)

30 data points

(a) Critical delay (ms)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Critical frequency (Hz)

frequency (NS)

fre
qu

en
cy

 (m
od

el
)

dynamic−link model

static−link model

30 data points

(b) Critical frequency (Hz)

8 9 10 11 12 13 14 15
50

55

60

65

70

75

80

85

90

95

100
Round trip propagation delay at critical frequency

capacity (pkts/ms)

de
la

y
(m

s)

N=40

N=30

N=20

N=50 N=60

(c) Stability region

Fig. 4. Validation and stability region. For each N , the region above the
curve is unstable and that below is stable.

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

16

18

time (sec)

wi
nd

ow
 (p

kts
)

(a) Individual window (delay = 40ms)

0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

300

350

400

450

500

time (sec)

qu
eu

e
(p

kts
)

(b) Queue (delay = 40ms)

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

140

160

time (sec)

wi
nd

ow
 (p

kts
)

		

(c) Individual window (delay = 200ms)

0 5 10 15 20 25 30 35 40
0

1000

2000

3000

4000

5000

6000

7000

time (sec)

qu
eu

e
(p

kts
)

(d) Queue (delay = 200ms)

Fig. 5. Individual window and queue traces. Simulation parameters: 50
sources, capacity = 9 pkts/ms, α = 0.8, virtual capacity = 95%.

