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Abstract

The search for unifying properties of complex networks is popular, challenging, and important. For model-

ing approaches that focus on robustness and fragility as unifying concepts, the Internet is an especially attractive

case study, mainly because its applications are ubiquitous and pervasive, and widely available expositions exist

at every level of detail. Nevertheless, alternative approaches to modeling the Internet often make extremely dif-

ferent assumptions and derive opposite conclusions about fundamental properties of one and the same system.

Fortunately, a detailed understanding of Internet technology combined with a unique ability to measure the net-

work means that these differences can be thoroughly understood and unambiguously resolved. This paper aims

to make recent results of this process accessible beyond Internet specialists to the broader scientific community,

and to clarify several sources of basic methodological differences that are relevant beyond either the Internet or

the two specific approaches focused on here; i.e.,scale-free networksandhighly optimized tolerancenetworks.

A popular case study for complex networks has been the Internet, with a central issue the extent to which its

design and evolution have made it “robust yet fragile” (RYF)—that is, unaffected by random component failures

but vulnerable to targeted attacks on its key components. One line of research portrays the Internet as “scale-free”

(SF) with a “hub-like” core structure that makes the network simultaneously robust to random losses of nodes yet

fragile to targeted attacks on the highly connected nodes or “hubs” [1, 2, 3]. The resulting error tolerance yet attack

vulnerability has been proposed as a previously overlooked “Achilles’ heel” of the Internet. The appeal of such a

surprising discovery is understandable, as SF methods are quite general and do not depend on any details of Internet

technology, economics, or engineering [4, 5].

One purpose of this paper is to explore how this SF depiction compares with the real Internet, and explain the

nature and origin of some important discrepancies. Another purpose is to suggest that a more coherent perspective

on the Internet as a complex network, and in particular its RYF nature, is possible in a way that is fully consistent

with Internet technology, economics, and engineering. A complete exposition relies on the mathematics of random

graphs and statistical physics [6], which underly the SF theory, as well as on the very details of the Internet ignored

in the SF formulation [7]. Nevertheless, we aim to show here that the essential issues can be readily understood,

if not rigorously proven, using less technical detail, and the lessons learned are relevant well beyond either the
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Internet or SF network models [8, 9, 10].

Power Laws and Scale-Free Models

One widespread focus of attention has been onpower laws(or scaling) in graph vertex connectivity. For a graph

havingn vertices, letdi = deg(i) denote the degree of vertexi, 1 ≤ i ≤ n. We callD = {d1, d2, . . . , dn} the

degree sequenceof the graph, assumed without loss of generality always to be orderedd1 ≥ d2 ≥ . . . ≥ dn.

Let G(D) denote the set of all connected simple graphs (i.e., no self-loops or parallel edges) having the same

graph degreeD. We will say graphsg ∈ G(D) havescaling degree sequenceD (or D is scaling) if for all

1 ≤ k ≤ ns ≤ n, D satisfies a power-lawrank-size relationshipof the formkdα
k ≈ c where0 < c and0 < α, are

constants andns determines the range of scaling [11]. Since scaling implieslog(k) + α log(dk) ≈ log(c), doubly

logarithmic plots of degreedk versus rankk yield approximately straight lines of slope−α. In contrast, exponential

rank-size relationships (i.e.,keλdk ≈ c) result in approximately straight lines on semi-logarithmic plots.

The most significant SF claims for the Internet are that the router graph has power law degree sequences

and these give rise to “hubs”, which by SF definition are highly connected vertices that are crucial to the global

connectivity of the network and through which most traffic must pass [3]. The SF assertion (later formalized

in [12]) is that such hubs holds the network together, giving it “error tolerance” to random vertex failures since

most vertices have low connectivity (i.e. are non-hubs), but also “attack vulnerability” to targeted hub removal,

a previously overlooked “Achilles’ heel.” The rationale for this claim can be illustrated using the toy networks in

Figure 1, all of which have the identical scaling degree sequenceD shown in Figure 1(e). Figure 1(a) shows a graph

(size issues notwithstanding) that is representative of the type of structure typically found in graphs generated by SF

models, in this case preferential attachment (PA). This graph is drawn in two ways, the left and right visualizations

emphasizing the growth process and Internet properties, respectively. Clearly, the highest degree nodes are essential

for graph connectivity, and this feature can be seen even more clearly for the more idealized SF graph in Figure 1(b).

Thus the SF claims would certainly hold if the Internet looked at all like Figure 1(a) and (b). As we will see the

Internet looks nothing like these graphs and is much closer to Figure 1(d), which has the same degree sequenceD

but is otherwise completely different, with high degree vertices at the periphery of the network, where their removal

would have only local effects. Thus, while scaling degree sequences imply the presence of high-degree vertices,

they do not imply that such nodes form necessarily “crucial hubs” in the SF sense.

The deeper origins of the claims involving power laws and hubs arise from the SF models’ roots in statistical

physics, where any particular graph is interpreted as an element from a larger statistical ensemble of graphs, with
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probability weights that typically arise either implicitly via some underlying stochastic generation process or by a

mechanism that explicitly assigns a weight to each element of the ensemble [13, 14]. While there exist a variety of

methods for generating ensembles of graphs having scaling degree sequences, including PA,Generalized Random

Graph (GRG), Power Law Random Graph (PLRG)[15], as well as random degree-preserving rewiring [16]),

the resulting models are widely conjectured to be asymptotically equivalent (see for example [6] and references

therein).

In particular, for a graphg having degree sequenceD we define the purely graph-theoretic quantitys(g) =
∑

(i,j)∈E(g) didj , whereE(g) is the set of edges in the graph. It is easy to check that highs(g) requires high-

degree vertices to connect to other high-degree vertices. Normalizing againstsmax = max{s(g) : g ∈ G(D)},
whereG(D) denotes the set of all simple, connected graphs having degree sequenceD, we define the measure

0 ≤ S(g) ≤ 1 of the graphg asS(g) = s(g)/smax. Althoughs(g) andS(g) can be computed for any graph and

do not depend on any particular construction mechanism, they have a special meaning in the context of ensembles

of graphs. Specifically,S(g) has a direct interpretation as therelative log-likelihoodof a graph resulting from

the GRG construction [17], and thus all of the SF model generation mechanisms generate essentially only high

S graphs. TheS-metric also potentially unifies other aspects of SF graphs, as it is closely related to betweeness,

degree correlation [6], and graph assortativity [18], and captures several notions of self-similarity related to graph

trimming, coarse-graining, and random rewiring [6].

The focus on ensemble-based methods means that the analysis in SF models has implicitly ignored those graphs

that are unlikely to result from such constructions, in particular graphs with smallS. Thus while power law

degree distributions are unlikely under some traditional random graph constructions (e.g, Erdös-Renýı random

graphs [19]), there are a multitude of other model generation mechanisms that give rise to power laws [20]. The

SF generating mechanisms are only one kind, but these only generate highS graphs, and this leaves unexplored an

enormous diversity of lowS graphs, as seen in Figures 1. The graphs in Figures 1(a-b) are relatively likely to result

from probabilistic construction while the graphs in Figures 1(c-d) are vanishingly unlikely. The PA-type graph in

Figure 1(a) hasS(ga) = 0.61 and is typical of the graphs that are likely under a variety of random generation

methods. The graph in Figure 1(b) is thesmax graph and thus by definition hasS(gb) = 1.0. It can be thought of

both as the most likely graph and also (uniquely) as the most “perfectly” scale-free graph with this degree sequence.

Of course the sheer enormity of the number of different highS graphs means that any particular one graph, even

the relativelymost likely, is actually unlikely in absolute terms to be selected. The graphs in Figures 1(c-d) have

respective valuesS(gc) = 0.33 andS(gd) = 0.34, furthermore there are relatively few graphs withS values this

low, and thus any graphs like these are vanishingly unlikely to arise at random [6]. The remainder of this paper
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explains in more detail why the underlying forces at work in the evolution of the real router-level Internet avoid the

generation of highS graphs and how this feature can be captured in an optimization-based design framework. We

also consider what, if anything, this framework has to say about the RYF nature of the Internet.

A Look at the Actual Internet

An obvious starting point for investigating the structure and underlying forces at work in the Internet is to inspect

detailed router-level maps from ISPs (Internet Service Providers). Abilene, the backbone for the Internet2 academic

network, is illustrated in Figure 2 and is an ideal example for many reasons that will be exploited throughout this

analysis [21]. Abilene publishes detailed hardware specifications for each router and link, so Figure 2 is exact, not

an approximation based on indirect measurements. Abilene is also a state-of-the-art network with essentially no

difference between physical (i.e. layer 2) and IP (i.e. layer 3) connectivity. This simplifies the exposition without

loss of generality and also eliminates a source of confusion in measured data from networks that use older legacy

technologies. Using regional academic networks and commercial ISPs, we verified that all the inferences and

conclusions based on Abilene hold in general. Commercial ISPs do not allow publishing such details because of

proprietary considerations, but router-level measurement studies [22, 23, 24] further confirm our analysis [7, 25,

26], although this requires additional statistical and Internet-specific expertise beyond the intended scope of this

paper.

Figure 2 shows that Abilene is designed as a sparsely connected mesh of uniformly high-speed (10Gbps),

long-range links between routers located in 11 major U.S. cities, with connectivity to regional and local networks

provided by some minimal amount of redundancy. These design features are typical of ISPbackbones(the main

connections and routers composing an ISP’s national or international network), which can differ in overall size

but are qualitatively similar. One of their most obvious features is the complete absence of SF hubs; high-degree

vertices can exist, but are found only within the local networks at the far periphery of the network and would not

appear anywhere close to the backbone.

While the issue of whether or not the real Internet actually has power laws in its connectivity is beyond the scope

of this article, there exists considerable evidence that existing claims of power laws in the router-level Internet may

be the result of misinterpretation of available measurements and/or their naive and inappropriate statistical analysis

(see [6] for a detailed discussion). It is certainly the case that current router technology could in principle support

high variability (possibly scaling), but a closer look at existing router technology confirms that if high connectivity

exists at all, it will be found toward the network periphery and not in its core. As we will show next, this is a
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consequence of the need for a high performance network.

Internet Modeling: An Optimization-Based Approach

Much of the topology of Abilene and other ISP backbones can be understood using annotated graphs with a few

technological and economic constraints that provide a simple, yet surprisingly complete model of the essentials of

network design [7].Highly Optimized/Organized Tolerance/Tradeoffs (HOT)has been proposed as a conceptual

framework for capturing the highly organized, optimized, and RYF structure of complex highly evolved systems [8].

HOT seeks an abstract but unified approach to diverse complex systems through models involving optimization of

tradeoffs between multiple functional objectives of networks subject to constraints on their components, usually

with an explicit source of uncertainty against which solutions must be tolerant, or robust. Constrained optimization

and robustness are the universal themes, but models of function, uncertainty, component constraints, and environ-

ment are necessarily domain specific. One consistent result of the HOT framework has been that once functional

performance and robustness tradeoffs are considered then in a variety of toy models engineering design [7] or bio-

logical evolution [9] easily generates power laws. This can occur in both deterministic and stochastic HOT models,

including models motivated by physics [8]. Power laws have been a central focus of the “emergent complexity”

view of SF and related methods, which arrive at them in completely different ways than HOT with its focus on

“organized complexity”.

Here, we present toy networks reflecting the HOT approach to modeling the router-level Internet, which we will

contrast with the corresponding SF network models. To this end, consider again the example network in Figure 1(d),

which we argue captures the kind of essential domain-specific tradeoffs that occur in engineering. Accordingly, we

refer to this toy network asHOTnet, although it is important to underscore that our results do not depend on designs

being formally optimal, which is unlikely to occur in practice. Instead, we will argue that any sensible network

design process with minimally realistic assumptions would produce something qualitatively similar.

A HOT model of the Internet’s router-level topology requires two general elements: constraints and functional

objectives. First, the technological and economic constraints on components such as routers and links and their

interconnection restrict what topologies are feasible or possible. Second, network backbones, and router-level

connectivity more generally, are subsystems in the larger decentralized and layered Internet infrastructure. The

consequence is that such subsystems can only be fully understood in terms of the functions they provide to the

higher layers of the protocol stack and the rest of the network. The main purpose for building physical network

infrastructures at the lower layers of the protocol stack is to carry effectively the expected or projected overall traffic
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demand generated at the higher layers, which in turn is ultimately driven by users at the application layer. Such

teleological explanations are understandably avoided in physics but are essential for engineering networks, and this

gap is responsible for much of the difference between the two approaches described in this paper.

A standard metric fornetwork performanceadopted here is the maximum throughput of the network under a

“gravity model” of end user traffic demands [27]. It assumes that every end vertexi has a total bandwidth demand

xi, that two-way traffic is exchanged between all pairs(i, j) of end verticesi andj, the flowXij of traffic between

i andj is given byXij = ρxixj , whereρ is some global constant, and is otherwise uncorrelated from all other

flows. While more elaborate metrics are possible, this notion of network performance is a reasonable measure of

the ability to provide afair allocation of end user bandwidths. Our performance measure for a given networkg is

then its maximum throughput with gravity flows, computed asP (g) = maxρ
∑

ij Xij , subject toRX ≤ B, where

R is the routing matrix obtained using standard shortest path routing.R = [Rkl], with Rkl = 1 if flow l passes

through routerk, andRkl = 0 otherwise.X is the vector of all flowsXij , indexed to match the routing matrixR,

andB is a vector consisting of all router bandwidth capacities.

The crucial elements of a design aimed at this notion of performance are realistic router capacities and eco-

nomic considerations. Hardware technology fundamentally limits the number of data packets that can be processed

per unit time, so routers must obey a form offlow conservationin the traffic that they handle. Although total router

capacity is constantly increasing as hardware improves, this tradeoff in router utilization cannot be avoided. Fig-

ure 3(a) shows the router bandwidth-degree limits used in this model. In terms of economics, the cost of installing

and operating physical links increases with link distance and can dominate the total budget for the global infrastruc-

ture, particularly in the backbone. While routers impose overall bandwidth limits, the backbone cost is primarily

dominated by the installation and operation of links. This cost imposes strong incentives to minimize the number

and length of deployed links by aggregating and multiplexing traffic at all levels of the network hierarchy, from the

periphery to the core. Thus the combination of router technology and link costsnecessitatethat when moving from

the periphery to the network core the link capacities, link lengths, and total router throughput generally increase

while router degreesdecrease. The result is possibly highly variable bandwidth and router degrees at the network’s

periphery, with necessarily a much greater uniformity of high bandwidth and low degree routers in the core.

As noted above, the networkHOTnetshown in Figure 1(d) was inspired by the real Abilene network, and

its overall connectivity was designed to achieve high performance while maintaining the scaling degree sequence

in Figure 1(e). This network uses essentially the Abilene backbone as its core (the inner circle of routers in

Figure 1(d)), and then assumes that end users (the outer circle) connect through small and greatly compressed

single-level regional networks (the middle circle of vertices). This allows us to create a network that uses the
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same technology as the real Internet, but has a scaling degree sequence. In particular, this scaling vertex degree is

achieved in a minimal but technologically plausible way by choosing a gravity model of end user traffic demands

and then aggregating these end users with routers that have high variability in their connectivity but must satisfy a

particular router technology constraint. While the resulting network in Figure 1(d) is far too compressed to look

like the real Internet, it has the same performance objectives, constraints, and design principles, though simplified

and shows that a scaling degree sequence is at least plausibly consistent with Internet technology and economics.

It could also reasonably be argued that this design-driven toy model grossly oversimplifies real Internet technology

and economics, but we next demonstrate that this type of model has superior explanatory power to alternatives

which ignore them entirely.

Contrasting HOT and SF Models

In view of the empirical evidence and the engineering arguments against popular SF claims regarding the location

and criticality of the highest-connectivity routers, we next quantify more precisely the qualitative observations

made above to illuminate the key methodological differences behind these different approaches and their resulting

models. In doing so, we consider again the four toy models from Figure 1 along with their most relevant properties.

To contrast the features of graphs having the same scaling degree sequence, we first consider the networkHOTnet

in Figure 1(d) alongside the “most preferential” network in Figure 1(b), which we denote in the remainder of this

paper asSFnet. In computing the performance of these two graphs, we observe thatP (HOTnet) = 5.76 × 1011

bps whileP (SFnet) = 4.89× 109 bps, a difference of more than two orders of magnitude.

This enormous performance difference can be understood by examining theutilization of individual routers

within each network, as illustrated in Figure 3(a). This figure shows the overall feasible configuration region

encapsulating the conservation between router degree and router throughput (measured in bandwidth) as discussed

above and represented asB in the computation of performance. While greatly simplified for use here, this abstract

representation for router bandwidth is consistent with real router technology [7], and it is adequate for our purposes

since the resulting conclusions depend only on the most general features of Figure 3(a) and not on specific details.

The unambiguous source of the poorSFnetperformance is that the high-degree hubs become saturated and create

severe bottlenecks, leaving the rest of the network with low overall utilization. In contrast, the connectivity in

HOTnetis such that the core routers are highly utilized and therefore enable greater overall network throughput.

An additional view into the performance and utilization of these two networks is available by considering the

distribution of bandwidth that is actually delivered to the end users in these two networks under maxflow conditions,
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as shown in Figure 3(b). The distribution of achieved end user bandwidth forHOTnetis highly variable spanning

four orders of magnitude (as opposed to five or more found in real networks [25]), but is considerably higher than

what is received by users inSFnetwho get uniformly low bandwidth. Another issue not quantified here is that, no

matter where the high-degree SF hubs were physically located, the link costs to connect them would be prohibitively

high. In contrast, the design aspects incorporated intoHOTnetensure that the deployed routers are used efficiently,

the network is able to satisfy end user bandwidth demands that are highly variable, and with relatively few long-

range links. For network engineers, the combination of superior throughput, high router utilization, low link costs,

and realistic end user bandwidth makesHOTnethighly desirable butSFneta very poor design choice, even though

networking reality dictates the need for some degree of overprovisioning that will result in a slightly less efficient

network thanHOTnet.

Another important comparison between the graphsHOTnetandSFnetis to investigate the presence of “Achilles’

heel” hubs. Here, we will consider robustness to router failures, defining this robustness as the remaining perfor-

mance of the network after routers are removed and after re-routing of traffic. That is, addressing the issue of

network robustness for the Internet requires at a minimum incorporating a simple abstraction of IP routing that

accounts for the feedback mechanism by which the real network “sees damage and works around it.” Note that

the main mechanism by which users improve robustness to network losses is through link redundancy (e.g., multi-

homing) but this was not an objective of our heuristic HOT design. However, we can still illustrate the differences

betweenHOTnetandSFnetin some limited way. Figure 3(c) shows the impact of deleting routers in succession,

always taking the worst-case that has not yet been deleted. The measure of performance after deletion of a vertex

is the amount of original traffic that can still be served by the remaining network after re-routing, but with routers

that still have to adhere to their original bandwidth constraints.

Consistent with SF claims [3], theSFnetnetwork is indeed fragile to the deletion of worst-case vertices (here,

worse-case means highest-degree), but resilient to deletions of other vertices. In stark contrast,HOTnetis not only

robust to worst-case deletions (here, worst-case are low-connectivity core vertices), but also shows high tolerance

to deleting other vertices. In particular, loss of high-degree edge routers disconnects only low-bandwidth users

and has no other effect on overall connectivity. BecauseSFnethas such poor nominal performance to start with,

its performance is worse intact thanHOTnetafter the latter has sustained substantial damage. Thus the “Achilles’

heel” claim for SF networks does not appear to hold simply on the basis of having a scaling degree sequenceD,

and we will provide one possible explanation for this difference in the next section. Fortunately, the actual Internet

is more likeHOTnetthanSFnetand also has a great deal of additional robustness. Because the real Internet consists

of multiple redundantHOTnet-type backbones that are moderately loaded, the ability to re-route traffic ensures that
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end users typically experience no discernible degradation in performance when core routers fail. In particular, the

real Internet would never experience the type of separation of the network into disjoint components as claimed by

the “Achilles’ heel” hub argument unless massive losses occurred.

TheHOTnetmodel in Figure 1(d) and theSFnetmodel in Figure 1(b) are just two points in the spaceG(D)

of simple connected graphs having identical scaling degreeD (shown in Figure 1(e)). The spaceG(D) is difficult

to visualize, mainly because it is very diverse and has a combinatorially large number of elements. However,

some aspects can be explored by projecting this high-dimensional space onto lower dimensions using macroscopic

measures. Here, we leverage our previously defined notions of performanceP (g) and relative likelihoodS(g), and

we show the values for our toy networks in Figure 4. The ability of theP (g) andS(g) measures to help differentiate

among graphs in the spaceG(D) is further illuminated by considering the two other networks shown in Figure 1.

Figure 1(c) depicts a graph having a heuristically “poor” engineering design (denotedBADnet), and Figure 1(a)

depicts a graph having “random” connectivity (denotedRNDnet) and is typical of graphs grown by preferential

attachment. Even though all four toy networks in Figure 1 are identical as far as their degree sequenceD is

concerned, three of them occupy completely opposite corners of theP (g) vs. S(g) plane. TheBADnetnetwork

demonstrates that lowS(g) does not necessarily imply high performance, and in general graphs having low-S(g)

may be completely different from one another. In contrast, theRNDnetshows that other graphs resulting from

SF models have the same poor qualitative and quantitative features asSFnet, and for the same reasons. We also

observe that graphs havingS(g) ≈ 1 are much more alike (essentially unique) and our results to date suggest that

if D exhibits high variability, it is impossible to have graphsg ∈ G(D) with both highS(g) andhighP (g).

Finally, we consider the graph operation ofpairwise degree-preserving rewiring, whereby two randomly chosen

edges are rewired but constrained to preserve the graph degree and network connectivity. It is easily shown that

by a finite succession of such rewirings, any graphg ∈ G(D) can be converted to any other, and thus this process

provides a simple mechanism for exploring the spaceG(D). The additional points in Figure 4 correspond to

rewirings ofHOTnetandSFnet, respectively, and demonstrate that while rewiring the former quickly produces

networks with poor performance, rewiring the latter produces little improvement in performance. Note that the

preferential attachment graph from Figure 4(a) is representative of a large number of graphs resulting from arbitrary

pairwise rewiring, thus justifying its name asRNDnetand supporting the conjecture that all SF models generate

essentially the same ensemble of graphs.

While far from comprehensive, the structural metricS(g) provides some understanding of the diversity of

graphs in the spaceG(D). One striking feature of this view is that some of the most celebrated features of SF

models, particularly the Achilles’ heel vulnerability, appear to hold only for graphs having scaling degree sequence
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D and highS(g). It is not a necessary consequence of scaling alone, as it does not apply to networks likeHOTnet

that have lowS(g), even if they have the same scaling degreeD. However, recalling that in addition to measuring

the “hub-like” nature of a graph,S(g) also has an interpretation as relative graph log-likelihood, the concentration of

points in Figure 4 suggests that the vast majority of graphs resulting from SF models have relatively high likelihood

of occurring and that the likelihood of recovering a graph likeHOTnetvia probabilistic construction is vanishingly

small.

The Real RYF Internet

The preceding discussion suggests that probabilistic constructions are unlikely to capture the true router-level struc-

ture of the Internet and also that claims of a vulnerability in high-degree nodes are not supported by either engineer-

ing data or theory. The true RYF nature of the Internet is a complex and heavily studied issue, but we will sketch

some central features. The perception of the Internet as a simple, robust, and homogeneous resource is the result of

a layered architecture that utilizes multiple forms of feedback control which enable robust performance in the pres-

ence of frequent disruptions and enormous heterogeneity. The lowest layers of the protocol stack—involving the

physical infrastructure such as routers and fiber-optic cables—have hard technological and economic constraints,

but each higher layer defines its own often unique connectivity, and the corresponding network topologies become

by design increasingly virtual and unconstrained. For example, in contrast to routers and physical links, the al-

lowable connectivity of documents and virtual links in the World Wide Web (WWW) is designed to be essentially

completely unconstrained.

An important feature of the Internet’s highly organized but largely hidden complexity is to make the full system

robust to the perturbations for which it was designed [28], but also potentially quite vulnerable to other pertur-

bations [29]. All components must obey the protocols, but because of extensive feedback regulation, the overall

system can tolerate otherwise enormous variability within these constraints and still deliver robust functionality

to applications, which are also the least constrained components. Since the complete absence of a component is

allowed, the system is thus by design robust to components which “fail off” by removal from the network, whether

caused by focused attacks or other failures.

Note that it is protocols and feedback regulation and not simple redundancy per se that enables this extraordinary

robustness. Another striking aspect of this robust design is a scalability, evolvability, and adaptability to exactly

the kind of radical network change (i.e. in both hardware at the lower layers and applications at the highest layer)

that the Internet has undergone in transforming from an academic research network to a critical component of
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the information infrastructure. Unfortunately, the Internet’s strong robustness and adaptability coexists with an

equally extreme fragility to components “failing on”, particularly via malicious exploitation or hijacking of the

very mechanisms that confer its robustness properties at higher levels in the protocol stack. Worms, viruses, spam,

and denial of service attacks remain familiar examples [30]. This RYF tradeoff is a critical aspect of the Internet,

and much research is devoted to enhancing these protocols in the face of new challenges. Thus, understanding

Internet robustness requires a perspective that incorporates protocols, layering, and feedback regulation, and this

view suggests that the most essential RYF features of the Internet actually come from aspects that are only indirectly

related to graph connectivity.

The presentation here has emphasized the HOT framework as an alternate approach to SF models when con-

sidering the RYF nature of the Internet, and many other choices of functions and constraints are possible. Other

researchers might emphasize alternative features that highlight particular tensions (e.g., design tradeoffs at differ-

ent levels of the Internet protocol stack) and would be justified in doing so. The main point is the importance

of incorporating issues such as performance, constraints, and tradeoffs—all of the things that make engineering

different from physics—when considering the “essential” features of a highly evolved system. Here, we denote

highly evolvedsystems as those resulting from an iterative design that incorporates tradeoffs between performance

and the use of available resources. Thus, the RYF features of the Internet are the result of its highly evolved nature,

and a key objective here has been to incorporate some of the most essential features in a simple model that can be

used to highlight the potential dangers of ignoring such aspects entirely.

Conclusion

The most important SF claim is that the Internet has “hubs” that form an “Achilles’ heel” through which most

traffic flows and whose loss would fragment the Internet and constitute its attack vulnerability (i.e., global loss of

connectivity). We have shown that there exist technological, economic, and graph theoretic reasons why this cannot

be (and is not) the case for the current router-level Internet, even if the initial claim that the Internet’s router-level

graph has a scaling degree is assumed to hold. The comparison between HOT and SF networks in Figure 4 only dis-

tinguishes two dimensions,P (g) vs.S(g), but there are many more dimensions in which such comparisons could

be made. Because SF generation mechanisms effectively yield only highS graphs, it is easy to characterize most

properties that result andSFnetis perfectly representative. Similarly, HOT designs necessarily have highly struc-

tured characteristics that are also easily evaluated. Not surprisingly,SFnetandHOTnetare opposite in essentially

every meaningful sense, and the real Internet network is much more likeHOTnet.
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Structure SFnet HOTnet Real Internet

High Deg. Vertices Core Periphery Periphery

Deg. Dist. Power law Power law Highly variable

Generated by Random Design Design

Core vertices high degree low degree low degree

Throughput Low High High

Attack tolerance Fragile Robust Robust

Fragility high-deg hubslow-deg core Hijack network

An additional question not addressed here is whether or not SF models, representing graphs with scaling degree

sequence and characteristically highS(g), may be appropriate representations at other layers of the Internet protocol

stack. One answer is that since scaling is abundant at higher levels of the protocol stack [26], SF models could

conceivably represent somevirtual graphs associated with the Internet (such as, hypothetically, the WWW or other

types of overlay networks). However, it is not clear what such models would have to say about the RYF nature

of the Internet. For example, if high connectivity websites such asGoogle or Yahoo! are disabled, the rest

of the WWW continues to function as it was designed to. At the same time, while previous applications of the

HOT framework to the WWW have focused on the tradeoffs between performance and constraints in the design

of individual websites [31], the HOT approach has not yet been applied to study the structure of the WWW as a

whole.

It is certainly appealing that SF network models can avoid all Internet-specific structure such as protocol stacks,

technological or economic constraints, and user heterogeneity yet make interesting and testable predictions. Un-

fortunately, this yields results that collapse when tested with real data or when examined by domain experts. This

raises the more basic question of the applicability to highly evolved systems of unstructured, ensemble-based ap-

proaches, of which SF networks is just one example, and a largely parallel story in biology further suggests that the

answer may be negative. Here interesting and testable SF claims about metabolic networks [32, 33] contrast sharply

with both real data and concrete HOT models [9]. Again, functional descriptions and component constraints, such

as conservation of energy and small moieties, the biochemical nature of underlying reactions, and the importance

of robustness and evolvability prove essential [34]. However, while the router-level story here may be reflective

of a broader debate about methodologies appropriate for complex networks, it is expected to take an even greater

effort in domains like biology to reach the same level of clarity.
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Figure 1:DIVERSITY AMONG GRAPHS HAVING THE SAME DEGREE SEQUENCED. (a) RNDnetA network consistent with construction
by “preferential attachment”. The two networks represent thesamegraph, but the figure on the right is redrawn to emphasize the role that
high-degree “hubs” play in overall network connectivity.(b) SFnetA graph having the “most preferential” connectivity again drawn both as
an incremental growth type of network and in a form that emphasizes the importance of high-degree nodes.(c) BADNet A poorly designed
network, with overall connectivity constructed from a chain of vertices.(d) HOTnet A graph constructed to be a simplified version of the
Abilene network shown in Figure 2.(e)Power-law degree sequenceD for networks (a)–(d). Onlydi > 1 shown.

Figure 2: Router-level topology of Abilene. Each vertex represents a router, and each link represents a physical connection, however
each physical connection can support many virtual connections, giving the appearance of greater connectivity at higher layers of the Internet
protocol stack. End user networks are shown in white, peering networks are shown in blue, and high-degree routers can only be found at the
network periphery (not shown here).

Figure 3: (a) Achieved router utilization: HOTnet (circles) is close to the “efficient frontier”, SFnet (diamonds) operates significantly
below this frontier, with the highly connected “hub” core router representing a glaring bottleneck.(b) Achieved distribution of end user
bandwidths: HOTnet (circles) delivers a wide range of realistically different bandwidths to end users; SFnet (diamonds) delivers uniformly
low bandwidth to all users.(c) Apropos the “Achilles’ heel” of the Internet: Robustness of HOTnet (SFnet) to deletion of worst-case
nodes (deleting the worst 20 vertices corresponds to removing about 20% of the routers).

Figure 4: THE DIVERSITY OF GRAPHS HAVING THE SAME DEGREE SEQUENCED. Despite having identical budget, technology
constraint, degree sequence, and traffic demand model, when computing and plotting for the four network models in Figure 1 both their
S(g) (x-axis) and network performanceP (g) (y-axis) metrics, the four models occupy completely different areas in theS(g) vs. P (g)
plane.
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