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Abstract

This paper outlines methods for computing the key factori-
zations necessary to solve general A and H. linear optimal
control problems.

Notation
L, & {Lebesque space ]
H, % {Hardy space ]
E 2 {Proper, real-rational |
RP*m & {pxm matrices in B} (similarly for # and L)
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Throughout this paper, a will be used whenever either a=2
or a== would apply equally. The term unit in RH, refers to any
M € RH. suchthat X! € RH.. When F is used as a prefix, it
denotes real-rational.

>

right coprime factorization over FH,

1. Introduction :

The importance of inner-cuter (IOF), spectral and coprime
factorizations in obtaining solutions to certain H; and H.
optimal control problems has been known for some time. The
solution to the general H, (a=2,=) optimal control problems
[1].[2] uses these factorizations and,in addition, the "comple-
mentary inner factor” (CIF), to reduce the general problem to
that of approximating an L, rational matrix by one in H,.

This paper focuses on the factorizations used in [2] and, in
particular, on explicit formulas and methods for computation.
We show that all the factorizations needed in the Hp and H.
optimal synthesis problem can be obtained using standard real
matrix operations on state-space representations. The Algebraic
Riccati Equation (ARE) plays a central role in computing the
desired factorizations. Because of space limitations, the
"proofs' of the results in this paper are extremely sketchy.

2. Background :

The general H, optimal control problem is shown in the fol-
lowing figure.

P ) [Py, Pl o ploregimm
Py PzzJ

The objective is to find a stabilizing X € R™¥P2 which solves
min | |Fi(P:K)| |a where F(PiK) & Pi+ PpK(I] = PpK) 1Py .
For nontriviality, assume that p; > mz and 7?»1 > Ppa.
K K (o +
: = {mg+po)x(pp+ my)
The first step is to find Kp [Km Kan €~F.’
such that F(P;F (K5 @) = F{T:Q) = T\, +NQN € RH
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stable and affine for any @ € RHZ?P2 This is the Youla
parametrization of all stabilizing controllers and is obtained by
finding coprime factorizations of P over the ring of stable ration-
als and solving a double Bezout identity to obtain the
coeflicients of Kg.

¥We are interested in a particular Kg which results in both N

and N being inner. That is, N*N=/ and NN*=/. This requires a

coprime factorization with inner numerat?r,.v }In addition, we
AT

require N) and N inner so that [N N)| and |3 | are square and
1 L I N

inner. N and ﬁ.l_ are called complementary inner factors {CIF).
With these we have that

t ~

*

173+ NG | = v w tr - vei |§
(Tus MOV = [ (T s NOTT Ry
|
F1* ool
=y NL}"[T“] R *loo 1‘ (2.1)

since both the a = £ and = norms are unitary invariant.

The Hp case immediately reduces to a best approximation
problem with Q¢ = Py,(N* [T))] N*), where Py, denotes projec-
tion onto Hp. The H. case is somewhat more complicated and
requires an additional spectral factorization.  To see how this
arises, consider F e specli.al case when TN *=0 and (2.1)
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reduces to
G=N*[Tu]l N*.
1t is easily verified that for any 7> || G ||«
l{ R+Q
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where (H)® denotes the unit spectral factor of the para-
Hermitian matrix H. Thus, the H. problem al g”reduces to a
best approximation problem since the [y?/ — G"‘GT is a unit and
can be absorbed into &. The general case similarly involves
both inner-outer and spectral factorizations [2]. The remainder
of the paper outlines methods for computing these factoriza-
tions.

3. Algebraic Riccati Equation :
Consider the Algebraic Riccati Equation,

FTX + XF - XWX + Q=0
where 7, W, € R, W=#T20 and §=¢7
with the associated Hamiltonian matrix
Fo-w)

-g —F’TJ

Our main interest is to find the unique real symmetric stabiliz-
ing solution such that the matrix (¥ - WX) is asymptotically
stable. For simplicity we will use "solution" of the ARE to mean
a real symmetric one. The ARE considered here is more general
than the ARE which arises in linear quadratic optimal control

and Kalman-Bucy filtering theory in that there is no assumption
on the definiteness of the matrix §.

The following theorem gives the necessary and sufficient
conditions for the existence of a unique stabilizing solution of
(ARE). Without loss of generality, we will assume that ¥ = GGT.
This is a slight generalization of a theorem of Kucera [3].

(ARE)

AH=
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Theorem 3-1:
The stabilizability of (F,G) and Re[X;(4x)] # 0
(v i=12..., 2n) are necessary as well as sufficient for the

existence of a unique stabilizing solution of (ARE).

Remarks :

(1) The unique stabilizing solution of Theorem 3-1 will be
denoted by Ric (4y).

(2) If @ =0, then the stabilizing solution X = 0.

Theorem 32 :

If @=HTH=>0 in (ARE) and X is its solution, then
Ker{X) < Ker(H).

4. Inner-Outer Factorization (IOF) :

48]

Assume G = 1CJDJ € pRpxm

is minimal. We use the notatior. "D}" for the orthogonal comple-
ment of D and ¥ (R = 0) for any square matrix Vs.t. VVV = R.
Theorem 4-1 :

, G has arcf G = NM~!with N inner if and only if G has no
{transmission) zeros on the jw-axis, including <.

(p = m) and the realization

A particular realization for the factorization is

[

yl |A=BELBR*

‘N‘= —F | R-%| € RH*PI*™
C-DF| DR %

where R = DTD > 0, F=RYBTX-DTC),

. l-Br-pTc  -BrBT ]
and X = Ric r!.—cTDlch ~(4-BrIDTCYT| = O
[Proof] :
(only if) :
Suppose G =NM™! is a rcf and N*N=/. Then

G*G = (M~ Y)*M™! >0 on the jw-axis since M is stable. Thus G
has no j w-axis zeros.
(if) :

The if part can be proven by directly verifying that the
above realization is a 7cf of G and that N*N = /. The condi-
tions on G insure, by Theorem 3-1, the existence of X.

Theorem 4-2 :

If p>m in Theorem 4-1, then there exists a
CIF Ny € RH*®~™) such that the matrix [ N N) ] is square
and inner. A particular realization is

A-BF|-X1CTD)
Ny=c=DF 1f
where X' is the pseudo-inverse of the stabilizing Riccati solution

X from Theorem 4-1.

[Proof] :
The proof consists of verifying directly that [ N N; ] is inner
using the above realization for N} and the realization for N from

Theorem 4-1. A key step requires that Ker(X) C Ker(D[C),
which follows from Theorem 3-2,

Theorem 4-3 :

There exists a rcf G = NM™! such that M € RHD™ is
inner if and only if G has no poles on the jw-axis. A particular
realization is

o -BF\B
v =| =F [I| € RHlnP>m
: C-DF|D
f —EBﬂ
where F =P57X and X = Ric r; —ATJ = 0.
[Proof] :

Similar to Theorem 4-1.

Remarks :

(1) The minimality condition in Theorem 4-3 can be weakened
to (4,F) stabilizable and Re[A;{4)] # 0 and the theorem
still holds.

(2) If G € RHE*™ in Theorem 4-1, then X is a unit in FH.. In
this case, G mN(HM 1) is called 'inner-outer factorization"
(10W).

(38) Dual results for all factorizations can be obtained when
P <m. In these factorizations, output injection using the
dual Riccati solution replaces state feedback to obtain
corresponding left factorizations.

5. Spectral Factorization :

Recall from Section 2 that the H. solution requires the
computation of the spectral factor which is a unit in FH.. The
following theorem characterizes this spectral factor. The same
assumptions on G apply here as did in Section 4 except that
G € RIZ¥™,

Theorem 5-1 :

Ify > {'G(s) ., there exists a unit ¥ € RHAT*™ such that
M*¥M =+ — G*G . Aparticular realization is given by

A~Kr Ky | B—Kr
AT

where R = ¥4 -DTD >0, Ko = RYBTX-D7C), Kr = YK:TR,

. A+BR-IDTC -BR-'gT
X=Ric \or(; pr-ipTyc —(A+BRDTC)T
and
AT - KT RK,)
Y = Ric {0 —A
[Proof] :

The proof consists of verifying from the above realizations
that M and #~! are stable and that ¥*¥ = ¥* - G*G.

Remark :
If G is stable, then ¥ = 0 and Kp=0.

6. Implementation :

All the factorizations in the theorems have explicit state-
space representations. Thus, the implementation of algorithms
can be done easily using real matrix operations. Two key steps
in the algorithms are:

(1) Solution of ARE : the ARE can be solved using the Schur
method which reduces the Hamiltonian matrix to real
Schur form by orthogonal similarity transformation and
then uses the invariant subspace assoclated with n stable
eigenvalues to find the stabilizing solution. See [4] for a
complete treatment.

(2) (DTDY and D ; using the QR factorization, we find
i)

where @ = {Q1 ' @

D =& i Qi] LO is orthogonal.
Then R = (D'D)* ‘and D = Q..

Using the well-known software packages EISPACK, LINPACK
and some of their extensions, experimental versions of these
algorithms have been implemented successfully. Experience to
date indicates that these algorithms are very reliable,
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