
FPIO = 4:45 Proceedings of 23rd Conference 
on Decision and Control 
Las Vegas, NV, December 1984 

ON INNER-OUTER AND SPECI'RAL FACTORIZATIONS 

Cheng-Chih Chu John C. Doyle 

Honeywell Inc.,  Systems  and  Research  Center, Minneapolis,  Minnesota 

Abstract 
This paper  outlines  methods for computing  the  key  factori- 

zations  necessary  to solve general Hz and H ,  linear  optimal 
control  problems. 

Notation 
Lebesque  space 1 

I Hardy  space 1 

t Proper,  red-rational 1 
Ipxm matrices in R {  (similarly for H and L )  

D t C(sI  -A)-'B 

right  coprime  factorization  over RH, 

Throughout  this  paper, a will be  used  whenever  either a=2 

M E RH, such  that K 1  E RH,. When R is used  as  a  prefix, it 
or a=- would apply equally. The term unit in RH, refers  to  any 

denotes  real-rational. 

1. Introduction : 
The importance of inner-outer (IOF'), spectral  and  coprime 

factorizations in obtaining  solutions  to  certain H z  and H ,  
optimal  control  problems  has  been h o w n  for some  time. The 
solution  to  the  general H a  (a=Z,=) optimal  control  problems 
[1],[2] uses  these  factorizations  and,in  addition,  the  "comple- 
mentary  inner  factor" (CIF'), to  reduce  the  general  problem  to 
that of approximating  an La rational  matrix by one  in Ha. 

This paper  focuses  on  the  factorizations  used in [ Z ]  and, in 
particular,  on  explicit  formulas  and  methods  for  computation. 
We show that all the  factorizations  needed in the Hz and H ,  
optimal  synthesis  problem  can  be  obtained using standard  real 
matrix  operations  on  state-space  representations. The Algebraic 
Riccati  Equation (ARE) plays  a  central  role in computing  the 
desired  factorizations.  Because of space  limitations,  the 
"proofs" of the  results in this  paper  are  extremely  sketchy. 

2. Background : 

lowing figure. 
The general H ,  optimal  control  problem is  shown in  the fol- 

R 

The objective is to find a stabilizing K E Rmpxpz which solves 
min I !Fl(P;K)j i, where Fi(P;K) 4 P I 1  tP12K(I  -PZK)-'P21 . 
For  nontriviality,  assume  that p1 > mz and mi > p z .  
K 
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stable  and affine for  any Q E RHEzxp'. This is  the Youla 
parametrization of all stabilizing  controllers  and is obtained by 
finding coprime  factorizations of P over  the  ring of stable  ration- 
als  and solving a  double Bezout identity  to  obtain  the 
coefficients of KC. 

l e  are  interested  in  a  particular KO xk1ch results in both 1%' 

and N being inner. That is, N*N=I  and .hJN*=I. This requires  a 
coprime  factorization with inner  numerat r, In addition, we 

require .VI and  .nilinner so that N IV I] and llvd are square and 

inner. Ai and 51 are  called  complementary  inner  factors (m. 
With these we have that 

N 7, 1 

since  both  the a = 2 and = norms  are  unitary  invariant. 
The He case  immediately reQ:es to  a  best  approximation 

problem with QOpt = PH,(N* [TI] ]  N ), where PX* denotes  projec- 
tion  onto Hz.  The H ,  case is somewhat  more  complicated  and 
requires  an  additional  spectral  factorization._To  see how this 
arises,  consider t e  spe ial case when T l l N l *  = 0 and (2.1) 

reduces  to ~ i R  E Q ]  ~~, with R = N *  [ T l l ]  Nh* and 

G = .vi [ T ~ ~ ]  E*. 
I t  is easily verified that for any y > / /  G 1 1 -  

where ( H ) g  denotes  the  unit  spectral  factor of the  para- 
Hermitian  matrix H .  Thus, the H ,  
best  approximation  problem  since 
can  be  absorbed  into Q. The general  case  similarly involves 
both  inner-outer  and  spectral  factorizations [ Z ] .  The remainder 
of the  paper  outlines  methods  for  computing  these  factoriza- 
tions. 

3. Algebraic  Riccati  Equation : 
Consider  the Algebraic Riccati  Equation, 

FTX + XF - XWX t Q = 0 

where P, W, Q E IRnxn, W = W T  2 0 and Q = QT 
with the  associated  Hamiltonian  matrix 

Ir -wl 

Our main  interest is to find the  unique  real  symmetric  stabiliz- 
ing solution  such  that  the  matrix (F - WX) is asymptotically 
stable.  For  simplicity we  will use  "solution" of the  to  mean 
a real  symmetric  one. The ARE considered  here  is  more  general 
than  the ARE which arises in linear  quadratic  optimal  control 
and Kalman-Bucy Altering theory in that  there is no  assumption 
on the  definiteness of the  matrix Q. 

The following theorem gives the  necessary  and  sufficient 
conditions  for  the  existence of a  unique  stabilizing  solution of 
(AIEE). Without loss of generality, we  will assume  that W = GGT. 
This is a slight  generalization of a  theorem of Kucera [3]. 
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Theorem 3-1 : 

existence of a unique  stabilizing  solution of (ARE). 
( b' i = 1,2 , . . . . . , 2 n )  are  necessary  as well as  sufficient  for  the 

Remarks : 
(1) The unique  stabilizing  solution of Theorem  3-1 will be 

(2) if Q 2 0, then  the  stabilizing  solution X 2 0. 

Theorem 34 : 

K e r ( X )  z Ker(H1. 

The stabillzabllity of ( F , G )  and Re[h , (AH)]  # 0 

denoted by K C  ( A H ) .  

If Q = H T H  2 0 in ( A R E )  and X is its  solution,  then 

4. Innerouter Factorization (IOF) : 
lAA_LBl 

Assume G = l c r D j  E RP""' (p 2 m )  and  the  realization 
is minimal. We use the  notatior. "Dl" for  the  orthogonal  comple- 
ment of D and RB ( R  2 0) for a n y  square  matrix V s.t. V V  = R .  
Theorem 4-1 : 

(transmission)  zeros on the  3s-axis,  including x. 

G has  a r c f  G = .VJd-' with ;V inner if and only if G has no 

A particular  realization for the  factorization is 

where R = D T D  > 0 I F = R - ' i B T X  - DT C), 

s 0. 

[Proof] : 
(only if) : 

Suppose G = IYfd-' is a 7 C f  and N * N = I .  Then 
GIG = (M- ' )*Jd- '  > 0 on the  10-axis  since M is stable. Thus G 
has no j s-axis zeros. 
(if) : 

The if part  can be proven by directly verifying that  the 
above realization is a mf of G and  that N * S  = I .  The condi- 
tions on G insure, by Theorem 3-1, the  existence of X. 

Theorem 4 2  : 
If p > m in Theorem  4-1,  then  there  exists  a 

CIF IV l  E RH,P'*-"') such  that  the  matrix [ S I V ~ ]  is square 
and  inner. A particular  realization is 

N 1 =  1-1 
where fl is the  pseudo-inverse of the  stabilizing  Riccati  solution 
X from Theorem 4-1. 
[Proof] : 

Remarks : 
(I) The minimality  condition in Theorem 4-3 can be weakened 

t o  ( A , B )  stabilizable  and Re[h , (A)]  # 0 and  the  theorem 
still  holds. 

(2) If G E RHEX"' in Theorem 4-1, then !d is a unit  in RH,. In 
this  case, G N ( M - ' )  is called  "inner-outer  factorization" 

(3) Dual results  for all factorizations  can  be  obtained when 
p < m. In these  factorizations,  output  injection using the 
dual Rlocati solution  replaces  state  feedback to  obtain 
corresponding  left  factorizations. 

(IO@. 

5. Spectral  Factorization : 
Recall from  Section 2 that  the H ,  solution  requires  the 

computation of the  spectral  factor which is a  unit in RH,. The 
following theorem  characterizes  this  spectral  factor. The same 
assumptions on G apply here as  did in  Section  4  except  that 
G E RLEXrn. 

Theorem 5-1 : 

Td*.'n = YI - G*G , A particular  realization is given by 
If y > I 'G(s )  _, there  exists  a  unit 'A E R H T X m  such  that 

and 

[Proof] : 

that M and M-' are  stable  and  that M'M = ?I - G*G . 

Remark : 

The proof consists of verifying from  the above realizations 

If G is stable,  then Y = 0 and Kr=O. 

6. Implementation : 
All the  factorizations  in  the  theorems have explicit  state- 

space  representations.  Thus,  the  implementation of algorithms 

in the  algorithms are :  
can  be  done  easily using real  matrix  operations. Two key  steps 

(1) Solution of ARE : the ARF, can  be solved using the  Schur 
method  whch  reduces  the  Eamiltonian  matrix  to  real 
Schur form by  orthogonal  similarity  transformation  and 
then  uses  the  invariant  subspace  associated with n stable 
eigenvalues  to find the  stabilizing  solution.  See [4] for a 
complete  treatment. 

(2) ( D T D ) f l  and D+ , using the QR factorization, we find 

D = [Ql I &) f] where Q = [QI ~ Qz] is  orthogonal. 

Then R = (D D) and Dl= 62. 

The proof  consists of verifying directly  that [ N IV ] is inner Using the well-known software  packages EISPACK,  LINPACK 
using the above realization  for '%'land the  realization flor N from and some of their  extensions,  experimental  versions of these 
Theorem 4-1. A key  step  requires  that K e r ( X )  c Ker(DlC), algorithms have been  implemented  successfully.  Experience t o  
which follows from Theorem  3-2, date  indicates  that  these  algorithms  are  very  reliable. 
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