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Biological systems have evolved complex regulatory mechanisms, even in situations where much simpler designs seem
to be sufficient for generating nominal functionality. Using module-based analysis coupled with rigorous mathematical
comparisons, we propose that in analogy to control engineering architectures, the complexity of cellular systems and
the presence of hierarchical modular structures can be attributed to the necessity of achieving robustness. We employ
the Escherichia coli heat shock response system, a strongly conserved cellular mechanism, as an example to explore the
design principles of such modular architectures. In the heat shock response system, the sigma-factor r32 is a central
regulator that integrates multiple feedforward and feedback modules. Each of these modules provides a different type
of robustness with its inherent tradeoffs in terms of transient response and efficiency. We demonstrate how the overall
architecture of the system balances such tradeoffs. An extensive mathematical exploration nevertheless points to the
existence of an array of alternative strategies for the existing heat shock response that could exhibit similar behavior.
We therefore deduce that the evolutionary constraints facing the system might have steered its architecture toward
one of many robustly functional solutions.
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Introduction

System-level approaches in biology have both a long history
[1] and a revived present [2–6]. The main catalyst behind the
renewed mainstream interest in the application of such
approaches to the study of biological systems is their
undeniable successes in the study of engineering systems.
Indeed, systems-level design has consistently been at the core
of modern engineering, motivating its most sophisticated
theories in controls, computation, and information. While
biological systems seem to employ feedback and feedforward
loops of a similar nature to those present in engineering
systems, they still possess subtle differences that need to be
elucidated.

Whether applied to manmade or naturally occurring
systems, the hallmark of a systems approach resides in the
identification of distinct functional modules and protocols,
i.e., the laws used to manage the connections between the
different modules. In this context, two questions are of
primary importance. What architectural aspects of biological
modules make them similar or different from manmade
machines [7,8]? And, how do biological control modules
evolve and assemble into hierarchical modular systems that
can survive in demanding environments [9]?

The first property that engineering and biological systems
seem to have in common is the need for elaborate designs to
generate robustly operational systems. A close scrutiny of
both types of systems shows that in many instances, minimal
designs are sufficient to generate nominal functionality.
However, these minimal designs often fail to provide crucial

aspects of robustness and performance necessary for com-
petitive survival in challenging environments. Examples from
technological sciences are abundant, while examples from
natural sciences are still emerging [10–12]. In either case, a
broad spectrum of strategies has evolved to generate such
robustness and maintain internal conditions in the presence
of both internal and external disturbances.
The heat shock response is one such robust system [13].

Heat shock causes unfolding, misfolding, or aggregation of
proteins at the cellular level on the order of seconds,
compromising cellular function. Cells overcome the heat
stress by initiating the production of heat-shock proteins
(hsps) that act as chaperones to refold denatured proteins
into their native states, or proteases that degrade them.
Although the objective of the heat shock response seems
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simple, its implementation involves complicated interactions.
In E. coli, these interactions are centered on regulating the
synthesis, degradation, and activity of the r32 transcription
factor [14]. These interactions result in chaperone-mediated
and protease-mediated feedback loops, and a feedforward
loop for translation [15]. Chaperone-mediated feedback
measures the quantity of unfolded proteins and modulates
the activity of r32, whereas protease-mediated feedback
modulates the stability of r32. At the same time, the
feedforward control senses temperature changes directly
and instantaneously induces r32 translation, thereby regulat-
ing r32 synthesis.

Using a dynamic model of the heat shock response, we have
previously analyzed the function of these feedback and
feedforward regulators in terms of robustness [10]. The
analysis presented in [10] mostly focused on local robustness
properties corresponding to a particular choice of plausible
parameter values. Here we explore instead a large space of
relevant kinetic parameters and study the performance of the
system in terms of newly defined mathematical criteria such
as the efficiency and yield of the time response. These criteria
are used to enable mathematical comparisons between the
dynamics of wild-type and virtual knockout mutants that lack
specific regulators. To interpret our results, we decompose
the architecture of the system into hierarchical modules, and
introduce the notion of a mechanistic protocol that dictates
the way by which these modules are assembled.

Results

Modular Architecture in the Heat Shock Response System
The biochemical map of the E. coli heat shock response can

be decomposed into functional modules (Figure 1) and flux
modules (Figure 2). The functional decomposition is carried
out in analogy to engineering control systems block diagrams.
Specifically, if we define the protein-folding task as the
process to be regulated or controlled, then the quantity that
drives this process is the actuation signal. The actuator
module in the heat shock system comprises the high-gain
processes of transcription and translation that produce
cellular chaperones. Such synthesis of chaperones uses a

modest control input, the number of free r32, and amplifies it
to produce a large chaperone actuation signal that drives the
folding plant. This control signal is itself the output of a
‘‘computational’’ or a ‘‘controller’’ unit which, based on the
sensed folding state of the cell, modulates the number of the
r32 molecules to generate an appropriate control signal.
Finally, the folding state of the cell is sensed through the
binding of the unfolded proteins to the chaperones. For
example, when the number of unfolded proteins increases,
the number of free chaperones decreases. The r32 computa-
tional unit then assesses this measured signal. The informa-
tion content of this signal leads, through both the
degradation of the r32 factor and the amount of sequestered
r32, to an adequate control action. The integration of the
molecular modules into these defined functional modules is
pictorially shown in Figure 1. The mathematical equations
can also be connected to the functional modules for the full
model (Tables 1–3, see also Materials and Methods). In this
model, Equations 1–6 and 8–11 in Table 1 describe the
computation module, while Equations 4 and 7 in Table 1
describe the FB sensor module. The mass balance equations,
Equations 12–19 in Table 1, are common to both modules.
The differential equations, Equations 20–28 in Table 1,
describe the actuators and plants. To clearly illustrate such
connections, a reduced order model of the heat shock
response (Table S1) is divided into functional modules
(Figure S1).

Figure 1. A Schematic Diagram of the E. coli Heat Shock Response and

Its Functional Modules

The notation of CADLIVE is used for simplifying the diagram:
binding, degradation, irreversible conversion,
protein synthesis, catalysis, activation. The rectangles show
the functional modules. The activation is the semantic reaction whose
molecular mechanism is neither revealed nor fully described. For
example, the notation of protein synthesis is semantic because many
molecules, such as ribosomes, tRNAs, and amino acids, are omitted. On
the other hand, the catalysis is the mechanistic reaction whose
mechanism can be described at the molecular interaction level.
DOI: 10.1371/journal.pcbi.0020059.g001
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Synopsis

Biological systems maintain phenotypic stability in the face of
various perturbations arising from environmental changes, stochas-
tic fluctuations, and genetic variations. This robustness, which seems
to be an inherent property of such systems, is still poorly
understood at the molecular level. At the same time, systems
approaches that were used with great success in the study and
design of complex engineered systems provide a unique oppor-
tunity for investigating the basic tenants of robustness in cellular
mechanisms. This is motivated by the fact that at the system level,
biology and engineering seem to have a large number of common
features despite their extremely different physical implementations.
The heat shock response is one such robust cellular system, which
interestingly achieves its seemingly simple objective of refolding or
eliminating heat-denatured proteins through a complicated set of
interactions. In analogy to engineering control architectures, the
complex regulation strategies seem to be a specifically designed
solution to generate robustness against different types of perturba-
tions.

Robustness Tradeoffs in Heat Shock



Superimposed on these functionalmodules, we identify four
distinct flux modules. Although our description of these fluxes
will be mainly qualitative, the components of the fluxes can be
easily identified in Figure 2 or through the equations
describing the simplified heat shockmodel (Figure S2). It turns
out that the identified roles of these fluxes are in close
correspondence with different experimentally identified as-

pects of the regulation schemeof the heat shock response. First,
we identify the FF flux module through which heat shock
directly increases the translation rate for r32 in a feedforward
manner (Figure 2A). This flux affects the time response to a
heat disturbance. Second, we identify the main feedback flux
(SEQ-FB module), which acts through the interaction of r32

with the chaperones (Figure 2B). The sequestration of r32 is

Figure 2. Flux Modules of the E. coli Heat Shock Response

(A) Feedforward flux module.
(B) Sequestration-mediated feedback (SEQ-FB) flux module.
(C) Degradation-mediated feedback (DEG-FB) flux module.
(D) r32 amplifier flux module. The notation used is identical to Figure 1.
DOI: 10.1371/journal.pcbi.0020059.g002
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controlled by the folding state of the cell, and therefore the
sequestration flux encompasses the folding machinery that
dictates the number of free chaperones, and accordingly the
number of free r32 that are capable of binding to the RNA
polymerase (RNAP) and initiating transcription of the hsps.
Therefore, the function of this flux seems to be the regulation
of the activity of r32. The third flux module that we identify in
the heat shock system is the degradation flux (DEG-FBmodule)
(Figure 2C). Themolecules involved in this flux are the free r32

factors that, as a result of their sequestration by the
chaperones, are susceptible to degradation by the FtsH
protease. This flux essentially controls the stability of r32.
Finally, the fourth flux module is an ‘‘amplifier flux’’ (Figure
2D). The amplifier flux depicts the sequence of reactions that
r32 undergoes, in addition to its different encounters with
othermolecules from its synthesis to its degradation byFtsH. In
the full model, the differential equations, Equations 20 and 21
in Table 1, describe the amplifier flux module, where the first
termof Equation 21 describes the FF fluxmodule. Equations 22
and 23 and Equations 24 and 25 (in Table 1) correspond to the
SEQ-FB and DEG-FB flux modules, respectively.

Speed, Yield, and Efficiency of the Heat Shock Response
and Its In Silico Mutants

Having identified the modular structure of the heat shock
response system and constructed the mathematical model, we

now analyze the dynamic behavior of the three flux modules:
SEQ-FB, DEG-FB, and FF. The main objective of the heat
shock regulatory system is to refold denatured proteins upon
exposure of the cells to heat shock. The response of the
system is required to be fast, efficient, and robust. To capture
these properties of the system, here we introduce the criteria
for analysis: yield, efficiency, and response time (see Materials
and Methods for details). Robustness and its connection to
these criteria are analyzed in the next section. The yield is
defined as the fraction of folded proteins in a pool of total
proteins and the efficiency as the ratio of chaperones (DnaK)
that are actively involved in refolding proteins to the total
amount of chaperones. Both high efficiency and yield would
indicate that unfolded proteins are being efficiently refolded
with an appropriate number of hsps, a highly desirable
feature. The speed of the response to increases in temper-
ature also constitutes a crucial performance criterion in the
heat shock system since proteins denatured for extended
periods of time tend to form aggregates. We therefore define
the response time as the time required for refolding 90% of
the total folded proteins after heat shock and use it as a
performance criterion.
To characterize the behavior of the system in terms of these

performance criteria, we base our analysis on mathematical
comparisons between wild-type and virtual mutants where
various flux modules are disabled. The ‘‘virtual’’ mutants

Table 1. Mathematical Equations for the Detailed Mechanistic Model of the Heat Shock Response

Reaction Name Equation Equation

Number

Binding reactions [RNAP: r70] ¼ K[1][RNAP][r70] (1)

[RNAP: r32] ¼ K[2][RNAP][r32] (2)

[RNAP:D] ¼ K[3][RNAP][D] (3)

[r32: Dnak] ¼ K[4][r32][DnaK] (4)

[r32: FtsH] ¼ K[5][r32][FtsH] (5)

[r32: DnaK: FtsH] ¼ K[6][r32: DnaK][FtsH] (6)

[Pun: DnaK] ¼ K[7][Pun][DnaK] (7)

[RNAP: r70:Pg] ¼ K[8][Pg][RNAP: r70] (8)

[RNAP: r32:Ph] ¼ K[9][Ph][RNAP: r32] (9)

[RNAP: r70:D] ¼ K[10][D][RNAP: r70] (10)

[RNAP: r32:D] ¼ K[11][D][RNAP: r32] (11)

[RNAP]o ¼ [RNAP] þ [RNAP: r70] þ [RNAP: r32] þ [RNAP: r70: Pg] þ [RNAP: r32: Ph] þ [RNAP:D] þ [RNAP: r70:D]

þ [RNAP: r32:D]

(12)

[r70]o ¼ [r70] þ [RNAD: r70] þ [RNAP: r70: Pg] þ [RNAP: r70:D] (13)

[r32]0 ¼ [r32] þ [RNAP: r32] þ [r32:DnaK] þ [r32:FtsH] þ [r32: DnaK:FtsH] þ [RNAP: r32:Ph] þ [RNAP: r32:D] (14)

[Dnak]o ¼ [DnaK] þ [r32: DnaK] þ [r32: DnaK:FtsH] þ [Pun:DnaK] (15)

[FtsH]o ¼ [FtsH] þ [r32: FtsH] þ [r32: DnaK: FtsH] (16)

[Protein]o ¼ [Pun] þ [Pun: DnaK] þ [Pfold]o (17)

[Pg]o ¼ [Pg] þ [RNAP: r70: Pg] (18)

[Ph]o ¼ [Ph] þ [RNAP: r32: Ph] (19)

Protein synthesis and degradation d½mRNAðr32Þ�
dt ¼ km½1� ½RNAP:r70 :Pg�

½Pg�o
½G� � kmd½1�½mRNAðr32Þ� (20)

d½r32 �o
dt ¼ kp½1� � g � ½mRNAðr32Þ� � kpd½1�½r32�o � kx½1�½r32 : FtsH� � kx½2�½r32 : DnaK : FtH� (21)

d½mRNAðDnaKÞ�
dt ¼ km½2� ½RNAP:r32 :Ph�

½Ph�o
½G� � kmd½2�½mRNAðDnaKÞ� (22)

d½DnaK �o
dt ¼ kp½2�½mRNAðDnaKÞ� � kpd½2�½DnaK �o (23)

d½mRNAðFtsHÞ�
dt ¼ km½3� ½RNAP:r32 :Ph�

½Ph�o
½G� � kmd½3�½mRNAðFtsHÞ� (24)

d½FtsH�o
dt ¼ kp½3�½mRNAðFtsHÞ� � kpd½3�½FtsH�o (25)

d½mRNAðProteinÞ�
dt ¼ km½4�½G� � kmd½4�½mRNAðProteinÞ� (26)

d½Protein�o
dt ¼ kp½4�½mRNAðProteinÞ� � kpd½4�½Protein�o (27)

d½Pf old �o
dt ¼ kx½3�½Pun : DnaK � � kx½4�½Pf old �o (28)

The subscript o is used to denote total concentration. The square brackets are used to denote concentration.
DOI: 10.1371/journal.pcbi.0020059.t001
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Table 2. Components Used in the Detailed Mechanistic Model of the Heat Shock Response

Component Definition Concentration within a Cell Reference

G Molar concentration of one molecule per cell 2.54 3 10�9 M calculated

D Nonspecific DNA binding sites 1.18 3 10�2 M [33]

Pg Housekeeping gene promoters 4000 3 [G]

Ph HSP gene promoters 30 3 [G]

Protein Total proteins 2 3106 3 [G]

RNAP RNA polymerase core 2000 3 [G] [34,35]

r70 r70 700 3 [G] [36]

r32 r32

DnaK DnaK (chaperone)

FtsH FtsH (protease)

Pun Unfolded proteins

Pfold Folded proteins

mRNA(protein) mRNA of proteins

mRNA(r32) mRNA of r32

mRNA(DnaK) mRNA of DnaK

mRNA(FtsH) mRNA of FtsH

RNAP:D D-bound RNAP

RNAP: r70 Holoenzyme of RNAP-bound r70

RNAP: r32 Holoenzyme of RNAP-bound r32

RNAP: r70:Pg RNAP: r70-bound promoter Pg

RNAP: r32:Ph RNAP: r32-bound promoter Ph

RNAP: r70:D RNAP: r70-bound promoter D

RNAP: r32:D RNAP: r32-bound promoter D

r32:DnaK r32-bound DnaK

r32:DnaK:FtsH r32:DnaK-bound FtsH

r32:FtsH FtsH-bound r32

Pun:DnaK Unfolded protein-bound DnaK

DOI: 10.1371/journal.pcbi.0020059.t002

Table 3. Kinetic Parameters Used in the Detailed Mechanistic Model of the Heat Shock Response

Flux Module Parameter Definition Unit or Value Reference

Chaperone-mediated feedback

control (SEQ-FB)

K[4] Association constant between r32 and DnaK M�1

km[1] Transcription rate constant for r32 min�1

Feedforward control (FF) H Translation efficiency for r32 –

Protease-mediated feedback

control (DEG-FB)

K[5] Association constant between r32 and FtsH M�1

K[6] Association constant between r32:DnaK and FtsH M�1

kx[1] Degradation rate constant of FtsH-bound r32 min�1

kx[2] Degradation rate constant of FtsH-bound r32 :DnaK min�1

Others K[1] Association constant between RNAP and r70 1 3 109 M�1 [37]

K[2] Association constant between RNAP and r32 5 3 109 M�1 Assumed

K[3] Association constant between RNAP and D 1 3 106 M�1 [38]

K[7] Association constant between unfolded proteins (Pun) and DnaK 1 3 106 M�1 [39]

K[8] association constant between RNAP: r70 and Pg 1 3 109 M�1 [35]

K[9] Association constant between RNAP: r32 and Ph 1 3 109 M�1 [35]

K[10] ¼ K[11] Association constant between RNAP:r and D 1 3 105 M�1 [38]

km[2] Transcription rate constant for DnaK 500 min�1 Assumed

km[3] Transcription rate constant for FtsH 20 min�1 Assumed

km[4] Transcription rate constant for proteins 1500 min�1 Assumed

kmd[2–4] mRNA degradation rate constant 0.5 min�1 Assumed

kp[1–4] mRNA translation rate constant 20 min�1 Assumed

kpd[1–4] Protein degradation rate constant 0.03 min�1 [40]

kx[3] Refolding rate constant of unfolded proteins (Pun) 1.5 3 103 min�1 Assumed

kx[4] Unfolding rate constant of folded proteins (Pfold) 75 at low, 150 at high temperature min�1 [Assumed]

DOI: 10.1371/journal.pcbi.0020059.t003

PLoS Computational Biology | www.ploscompbiol.org July 2006 | Volume 2 | Issue 7 | e590005

Robustness Tradeoffs in Heat Shock



employed in this paper are distinct from ordinary gene
knockout mutants. Genetic mutations alter the structure of
the system while leaving all kinetic parameters not related to
the mutation intact. Our virtual mathematical mutants,
however, compensate for the mutation by readjusting the
kinetic parameter values so as to conserve such properties of
the wild-type as yield and efficiency. This allows for the direct
comparison between architectures that generate an equiv-
alent output, a difficult task in the wet lab. Mathematically, we
carry out these mathematical mutations by looking at the
structural blueprint of the heat shock response system and
removing the terms in the differential equations model that
contribute to the targeted mechanism. These virtual mutants
include a system where FF is the only regulator (SEQ-FB and
DEG-FB double knockout mutant), a system where sequestra-
tion is the only response regulator (FF and DEG-FB double
knockout mutant), a system where sequestration is aug-
mented with degradation feedback (FF knockout mutant),
and a wild-type system possessing the three types of control.
The kinetic parameters for the wild-type are determined
from the heat shock literature. The kinetic parameters used
in all mutant models are chosen to produce a value of the
yield equal to 0.99 at both low and high temperature and an

efficiency value greater than 0.9 at low temperature. We carry
out the comparison between wild-type and mutants at high
temperature. There are evidently multiple parameter sets
that give a yield value equal to 0.99. We use these different
sets to further study the dependence of the transient
response on the kinetic parameters.
The corresponding time courses for wild-type and various

mutants are shown in Figure 3. The level of r32 for the wild-
type in Figure 3A increases rapidly at heat shock, achieves a
sharp peak, and then reduces to a new steady state. This
behavior corresponds to a time course characteristic of a
typical heat shock response. The FF knockout mutant model
also produces a peak of r32, albeit much smaller than in wild-
type. This peak is due to the transient stabilization of r32 by
the DEG-FB module. In contrast, the system possessing only
FF (the SEQ-FB/DEG-FB knockout double mutant) exhibits
an over-damped response and does not show any peaks in the
level of r32 upon heat shock. The slow rise in r32 is due to
increased translation at high temperature. When the only
form of regulation is through the SEQ-FB (the DEG-FB/FF
double knockout mutant), the level of r32 decreases slightly
after heat shock as the abundant free r32 at the onset of heat
shock competes with the housekeeping r70 factor to bind

Figure 3. Time Evolution of r32, DnaK, Yield, and Efficiency of the Heat Shock Response System and Its Different Mutants

(A) r32, (B) DnaK, (C) Yield, (D) Efficiency. Heat shock occurs at 10 min and is implemented through an increase in the rate constant for protein
denaturing. The parameters for the wild-type and mutants are adjusted to provide a value of 0.99 for the yield at the steady state level at low
temperature, and the efficiency is constrained to be more than 0.9 at high and low temperature. The values of the key parameters for each model are
provided as follows.
(Green) SEQ-FB/DEG-FB double mutant (FF system): K[4] ¼ 0 M�1, km[1]¼ 0.04 min�1, g¼ 1 (low temperature), g¼ 4 (at high temperature);
(Blue) DEG-FB/FF double mutant (SEQ-FB system): K[4]¼ 4.096 3 108 M�1, km[1] ¼ 0.2 min�1, g¼ 1;
(Red) FF mutant (SEQ-FBþ DEG-FB system): K[4] ¼ 4.0 3 105 M�1, km[1]¼ 1.6 min�1, K[5] ¼ K[6]¼ 1.0 3 108 M�1, kx[1]¼ kx[2]¼ 5 min�1, g¼ 1;
(Black) Wild-type (SEQ-FBþDEG-FBþ FF system): K[4]¼ 4.0 3 105 M�1, km[1]¼ 1.6 min�1, K[5]¼ K[6]¼ 1.0 3 108 M�1, kx[1]¼ kx[2]¼ 5 min�1, g¼ 1 (low
temperature), g¼ 4 (at high temperature).
DOI: 10.1371/journal.pcbi.0020059.g003
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RNAP. As a result, the production of r32, which is governed
by r70, is slightly suppressed. It is therefore apparent that
DEG-FB contributes greatly to the characteristic peak of r32.
Our model does not take into account the fact that r32 is also
transcribed by the sigma factor rE. This transcription is
negligible at 30 8C and increases at 42 8C. Further, tran-
scription of r70 increases after heat shock since r70 has a heat
shock promoter. Overall, this contributed in part to the
experimentally observed increase in r32 levels upon heat
shock induction. However, as a first approximation, we
expect the contribution of these interactions to be small
compared with the contribution of the DEG-FB.

Figure 3B shows the time course for the chaperone DnaK.
The level of DnaK for the wild-type system increases upon
heat shock, achieves a small peak, and then declines to a new
steady state. The DnaK time courses for the FF mutant and
the DEG-FB/FF double mutant show smaller peaks and
delayed rise times, while that for the SEQ-FB/DEG-FB double
mutant shows a critically delayed response.

Figure 3C shows the yield time course that characterizes
the transient response of folded proteins after heat shock.
The figure indicates that the level of folded proteins in all
four systems was satisfactorily restored to its pre-shock value
at the end of the response. The response in the FF mutant
and DEG-FB/FF double mutant was slightly delayed, while the
delay in the SEQ-FB/DEG-FB double mutant was about 100
min. These results show that FF alone is not sufficient to
achieve the fast response observed in the wild-type heat
shock. Alternatively, the FF, SEQ-FB, and DEG-FB modules
orchestrate their functions and work additively to implement
a fast response.

Figure 3D shows the efficiency time course that character-
izes the transient response of folded proteins after heat
shock. Upon temperature up-shift, the efficiency increases
sharply as heat-denatured proteins accumulate and bind to
DnaK. In all the cases considered, except for the SEQ-FB/
DEG-FB double mutant, the efficiency undergoes an under-
damped transient and finally reaches a new steady state. The
shape of the transient is negatively correlated with that of the
DnaK concentration, as expected from the definition of the
efficiency measure. As the DnaK level overshoots slightly, an
excess of DnaK is produced, generating disproportionate
increases in the total number of DnaK molecules as compared
with the DnaK level bound to unfolded proteins, therefore
reducing the efficiency. Comparison of the yield and
efficiency plots points to a fundamental tradeoff that under-
lies the operation of the heat shock response system. While
overexpression of DnaK increases the yield, it simultaneously
decreases the efficiency, which necessitates the existence of a
balance that establishes acceptable values for both.

We now quantify more accurately some of our previous
observations. Specifically, we focus on the FF and DEG-FB
loops, since Figure 3CD indicates that they greatly influence
the adaptation time of the yield and efficiency. For the DEG-
FB/FF double mutant, the FF mutant, the SEQ-FB/DEG-FB
double mutant, and the wild-type models, we compute both
the response time and low temperature r32 concentration for
values of the 2-D parameter space (corresponding to the
transcription rate constant of r32 and the association
constant between DnaK and r32) that achieve a yield greater
than 0.9 and an efficiency greater than 0.85. The result is
shown in Figure 4. For the SEQ-FB/DEG-FB double mutant

(FF-alone system), the response time was 80 min. It was
difficult to obtain a fast response under the provided
constraints of the yield and efficiency. However, the addition
of FF to the closed loop feedback system substantially
reduced the response time. For the values of the parameters
that achieve low r32 concentrations, the addition of DEG-FB
to SEQ-FB dramatically reduced the response time, an effect
further enhanced by the addition of FF. However, the
response time in the three cases was comparable at high r32

concentrations. SEQ-FB with the high r32 concentration
showed a fast response, because the heat shock response does
not need the time-consuming synthesis of r32.

Sensitivity Analysis
In this section, we study the robustness properties of the

heat shock response. Specifically, we focus on the sensitivity
of the total chaperone level to the transcription rate constant
of DnaK. A large sensitivity of the number of chaperones to
crucial parameters is undesirable as it produces a variable
and unpredictable folding of proteins, both at low and high
temperature. We again compare the various mutants and the
wild-type. For the SEQ-FB/DEG-FB double mutant, we search
the 2-D parameter space corresponding to the translational
efficiency of r32 (parameter g in Table 3) and the tran-
scription rate constant of r32 (parameter km[1] in Table 3).
We isolate the values of these parameters that produce
acceptable values of yield and efficiency at low and high
temperature (set again to values greater than 0.9 and 0.85,
respectively). For such values of the parameters, we deter-
mine the sensitivity of DnaK to its transcription rate
(parameter km[2] in Table 3). Interestingly, the SEQ-FB/
DEG-FB double mutant exhibited only one set of parameter
values that were able to reproduce the desired yield and
efficiency. Obviously, the sensitivity of the DnaK level to its
transcription rate in the SEQ-FB/DEG-FB double mutant is
one since all parametric perturbations are directly trans-
mitted to the output of the system in the absence of feedback
loops. However, in addition to large sensitivity, these results
indicate that the absence of feedback limits the kinetic range
where the system can operate efficiently.
We repeat the same exercise for the other virtual mutants.

For the various cases considered, we search the 2-D
parameter space corresponding to the binding between r32

and DnaK (K[4] in Table 3) and transcription rate of r32

(km[1] in Table 3), and isolate regions that simultaneously
produce values of yield greater than 0.9 and values of
efficiency greater than 0.85 at both low and high temper-
atures. For these parameter regions, we determine the
sensitivity of DnaK to its transcription rate during low-
temperature growth. The FF control operating alone in open
loop is characterized by a high sensitivity of the total DnaK
to the transcription rate constant for DnaK (unpublished
data). This result is expected, as lack of robustness is an
inherent property of open loop systems. By contrast, a
system implementing SEQ-FB is characterized by small
sensitivity, demonstrating that SEQ-FB plays a major role
in enhancing robustness (Figure 5A). Interestingly, the
addition of DEG-FB to SEQ-FB shifts the parameter region
where the desired yield and efficiency can be achieved
(Figure 5AB). In fact, the increased synthesis of FtsH at high
temperature suppresses the level of r32, resulting in
decreased yield as compared with the mutant where SEQ-
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FB is the only control mechanism available. For parameters
lying in the desired yield and efficiency region, the sensitivity
is slightly higher than in the system implementing SEQ-FB
alone. The addition of the FF loop to DEG-FB and SEQ-FB
increases the size of the parameter space where yield and
efficiency can be achieved, but does not contribute to the
decreased sensitivity (Figure 5BC). This effect is the outcome
of the ability of FF to generate high values for the yield at
elevated temperatures. The sensitivities in these three cases
did not significantly depend on the r32 concentration
(unpublished data), differing from the case of transient
response.

To further delineate this tradeoff between yield and
sensitivity, we computed the sensitivity of the total DnaK
and the yield of the response to K[4], the association constant
between r32 and DnaK (Figure 6A), and to km[1], the
transcription rate constant for r32 (Figure 6B). An increase
in K[4] decreases both the sensitivity and the yield, while an
increase in km[1] increases both. However, while the
sensitivity value changes by multiple folds over the range of

Figure 5. Sensitivity of the Total DnaK to the Change in the Transcription

Rate Constant for DnaK at Low Temperature

The plot reports the sensitivity computed for the parameters values that
satisfy the required yield and efficiency (yield . 0.9 and efficiency . 0.85 at
low and high temperature). Yield and efficiency were computed by search-
ing the 2-D parameter space consisting of the transcription rate constant
for r32 and the association constant between r32 and DnaK as follows:

km½1� ¼ 0:05 3 2x min�1 ðx ¼ 0; 1; 2; . . . ; 13Þ;
K½4� ¼ 105 3 2y M�1 ðy ¼ 0; 1; 2; . . . ; 21Þ;

for the various systems,
(A) DEG-FB/FF double mutant (SEQ-FB system): K[5]¼K[6]¼0 M�1, kx[1]¼
kx[2]¼ 0 min�1, g¼ 1,
(B) FF mutant (SEQ-FBþDEG-FB system): K[5]¼K[6]¼1 3 108 M�1, kx[1]¼
kx[2]¼ 5 min�1, g¼ 1,
(C) Wild-type (SEQ-FB þDEG-FB þ FF system): K[5] ¼ K[6] ¼ 1 3 108 M�1,
kx[1]¼ kx[2]¼ 5 min�1, g¼ 1 (low), g ¼ 2 (high).
DOI: 10.1371/journal.pcbi.0020059.g005

Figure 4. Transient Response of the Wild-Type and Virtual Mutants

The response time, defined as the time at which the level of unfolded
proteins recovers to within 90% of its pre-shock value, is plotted versus
the total r32 concentration at low temperature. The level of r32

parameterizes the 2-D parameter space (the transcription rate constant
for r32 and the association constant between r32 and DnaK) that
satisfies the yield and efficiency constraints (yield . 0.9 and efficiency .
0.85 at low and high temperature). The two parameters:

km½1� ¼ 0:05 3
ffiffiffi

2
p x

min�1 ðx ¼ 0; 1; 2; . . . ; 25Þ;
K ½4� ¼ 105 3 4 y M�1 ðy ¼ 0; 1; 2; . . . ; 25Þ;

were varied for the wild-type (SEQ-FBþDEG-FBþFF) (n): K[5]¼K[6]¼1 3
108 M�1, kx[1]¼ kx[2]¼ 5 min�1, g¼ 1 (low), g¼ 2 (high), for the DEG-FB/
FF double mutant (SEQ-FB) (�): K[5]¼K[6]¼0 M�1, kx[1]¼kx[2]¼0 min�1,
g¼1, and for FF mutant (SEQ-FBþDEG-FB) (�): K[5]¼K[6]¼1 3 108 M�1,
kx[1] ¼ kx[2] ¼ 5 min�1, g ¼ 1. For SEQ-FB/DEG-FB double mutant (FF
alone) (X): K[4]¼ K[5]¼ K[6]¼ 0 M�1, kx[1]¼ kx[2]¼ 0 min�1, g¼ 1 (low),
the two parameters of km[1] and g (high temperature) are varied as:

km½1� ¼ 0:01 3
ffiffiffi

2
p x

min�1 ðx ¼ 0; 1; 2; . . . ; 23Þ;
g ¼

ffiffiffi

2
p x ðy ¼ 0; 1; 2; . . . ; 10Þ:

In the mutant where FF is operating alone in open loop, the parameter
combination of km[1] ¼ 0.04 min�1 and g ¼ 1 (low), g ¼ 2 (high) is the
only solution to satisfy the required yield and efficiency.
DOI: 10.1371/journal.pcbi.0020059.g004
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K[4] and km[1] variation, the changes in the yield values are
more modest. Therefore, an increase in the ‘‘strength’’ of the
SEQ-FB greatly increases the robustness of the system, but at
the expense of some decrease in its yield performance. This
can be analytically validated further using the simplified heat
shock model (Figure S3, Protocol S1).

Stochastic Analysis
The effect of stochastic fluctuations attributed to bio-

chemical noise has been shown to be especially pronounced

in systems with low molecular counts [16]. The main regulator
of the heat shock response, r32, is on the order of 30–50
molecules per cell (75–125 nM). We have previously demon-
strated that DEG-FB contributes largely to the attenuation of
biochemical noise generated by the small numbers of r32

molecules [10,17] (see also Figure 7A, computed using the
Stochastic Simulation Algorithm [18]). Here, we extend this
analysis by comparing the stochastic behavior of the wild-type
heat shock system implementing DEG-FB to that of a DEG-FB
mutant for a large range of parameters. As a measure of the
variability in the system, we consider the coefficient of
variation (CV) of DnaK, calculated by dividing the standard
deviation of DnaK time course data by its mean value. Similar
to the deterministic analysis, we only consider the parameter
values in the 2-D parameter space (K[4] and km[1]) that
achieve a yield value greater than 0.9 and an efficiency value
greater than 0.85 at low and high temperatures. For the
parameter values that achieve such desired efficiency and
yield values, we compute the CV and the mean concentration
of total r32 at low temperature, and plot one versus the other.
The result is shown in Figure 7B. For the wild-type, the CV is
less than 0.1 over the whole range of r32. In the DEG-FB
knockout mutant, however, the CV is considerably larger,
particularly for lower r32 concentrations. At higher concen-
trations of r32, the CV for both wild-type and mutant
decreases are as would be expected. The CV of the wild-type
remains smaller than that of DEG-FB mutant for all ranges of
r32 concentrations. The two CVs however become compara-
ble for large concentrations of r32, indicating that an
alternative heat shock response strategy lacking DEG-FB
can achieve reasonable noise attenuation by using a large
number of r32 molecules. Such a strategy would evidently
entail a tradeoff in terms of the metabolic cost of producing
numerous r32, and hence numerous chaperones. Interest-
ingly, the periplasmic heat shock response in E. coli is
centered on the abundant sigma-factor rE (5,000 molecules/
cell) whose degradation is not regulated [19].

Discussion

Functional Analysis of the Heat Shock Response and
Comparison with Engineering Systems
In this paper, we have used engineering analogies to

decompose the heat shock system into hierarchical molecular,
functional, and flux modules. Following this modular archi-
tecture, we found that mathematical mutations closely
corresponded to the deletion of specific flux modules. The
mathematical comparison between wild-type and the virtual
mutants that lack flux modules proved to be very useful for
assigning a function to the deleted components. To perform
unbiased comparisons between wild-type and mutants, the
mathematical models were constrained by the requirement of
achieving the same values of appropriately defined yield and
efficiency measures. Using a combination of analytical results,
careful simulations, and searches in the relevant parameter
space, we investigated the functions of each module in terms
of performance criteria such as transient response, steady-
state sensitivity and noise rejection characteristics. FF was
identified as a powerful strategy that allows for the
adaptation to elevated temperatures but that cannot imple-
ment a robust response if used by itself in open loop.
Negative feedback loops increased the robustness of the

Figure 6. Robustness Tradeoff of SEQ-FB

The plots show the yield (dotted line) and the sensitivity of the total
DnaK concentration (solid line) with respect to a change in the
transcription rate constant for DnaK as a function of the association
between and r32 and DnaK (K[4]) (A) and the transcription rate constant
for r32 (km[1]) (B).
(A) The association constant between r32 and DnaK (K[4]) is varied as
follows,
K[4]¼ 105 3 2x M�1 (x¼ 2, . . ., 16), when the other kinetic parameters are
fixed: km[1]¼0.8 min�1, K[5]¼K[6]¼0 M�1, kx[1]¼kx[2]¼0 min�1, and g¼1.
(B) The transcription rate constant for r32 (km[1]) is varied as follows,
km[1]¼ 0.05 3 2x min�1 (x¼ 2, . . .,10), when the other kinetic parameters
are fixed: K[4]¼ 1.6 3 109 M�1, K[5]¼ K[6]¼ 0 M�1, kx[1]¼ kx[2]¼ 0 min�1,
and g¼ 1.
DOI: 10.1371/journal.pcbi.0020059.g006
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system in the presence of parametric uncertainty and
internal fluctuations, but limited the yield for production of
hsps and hence the folding of heat-denatured proteins.
Furthermore, the use of degradation feedback implemented

a faster response to a heat disturbance and reduced the
effects of biochemical noise [10,17].
Despite extremely different physical implementations,

these regulatory strategies are widely used both in engineer-
ing and in biological systems. The electronic amplifier is an
example of an engineering system that utilizes feedback to
create robustness to parameter variations. In the absence of
feedback, an open-loop amplifier has a wildly varying gain
due to its sensitive dependence on its parameters and
external environment. By closing the loop with the appro-
priate feedback, the system attains robustness to various
uncertainties, making it a reliable amplification device that is
used across a wide range of engineering applications. One
often finds more than one layer of feedback control in
engineering systems. For example, a feedback amplifier may
itself be used in a feedback loop to control the motion of a
mechanical device such as a motor. Feedforward control is
also frequently employed in engineering systems to speed up
the systems rejection of external disturbances. Once meas-
ured, these disturbances can be compensated for directly at
the system input before they lead to large deviations in the
output. Even though such deviations eventually get sensed
and corrected by the feedback loop, the response time and
effort needed for correction will be larger in the absence of
feedforward. One engineering domain where feedforward is
in common use is process control. As an example, a stirred
tank with a heat exchanger is often used to maintain the
reactants within the tank at a desired temperature. A
feedback loop that adjusts the heat flow rate based on
temperature measurement in the tank can be used for that
purpose. If, in addition, the highly variable temperature of
the feed material entering into the tank (disturbance) is also
measured, this signal can be used in a feedforward fashion to
adjust the heat flow rate in a way that cancels, or almost
cancels, its anticipated effect on the tank temperature. Any
residual differences between the actual and desired temper-
ature is sensed by the feedback sensors and is corrected via
the feedback loop. The result is a faster response and
improved performance over feedback control alone.
As a result of this analysis, we propose that the use of

complex regulation strategies in the heat shock system is
likely to be a specifically designed solution to different
aspects and requirements of heat remediation rather than the
result of evolutionary accidents that gave birth to redundant
regulatory loops. To the contrary, the regulatory structures in
the heat shock response seem to be crucial elements whose
function is orchestrated to address the numerous, and
sometimes contradictory, performance and design issues.
These regulatory structures in turn impose new tradeoffs and
costs that can be identified in the heat shock system. The
SEQ-FB, for example, causes the yield of the response to
decrease. Furthermore, the DEG-FB module implements a
futile synthesis/degradation cycle that generates a fast
response and high feedback gain despite the expense of
constant utilization of mass and energy. At the same time, the
use of complex regulation strategies generates new fragilities
that are then compensated by other modules. For example, an
FtsH knockout causes r32 to increase explosively in our
model; DnaK would be overproduced to dangerous levels if
there were no SEQ-FB module. Redundant protease flux
modules (HslVU, ClpAP, Lon) appear to be fine-tuning for
the level of r32, but they do not fully compensate for

Figure 7. Stochastic Simulation of the Heat Shock Response

(A) Stochastic realization of the concentration of DnaK at low temper-
ature for the wild-type and the DEG-FB mutant. The average concen-
tration of r32 and DnaK are constrained to be equal in wild-type and
mutant. In the wild-type (bold line): [K4] ¼ 5.12 3 107 M�1, km[1] ¼ 3.2
min�1 K[5]¼K[6]¼1 3 108 M�1, kx[1]¼ kx[2]¼5 min�1, g¼1. In the DEG-
FB mutant (thin line): [K4]¼ 5.12 3 107 M�1, km[1]¼ 0.1 min�1 K[5]¼ K[6]
¼ 0 M�1, kx[1]¼ kx[2]¼ 0 min�1, g¼ 1.
(B) The CV of DnaK is plotted as a function of total r32 concentration for
the wild-type (SEQþDEGþFF system) (n) and the DEG-FB knockout
mutant (SEQþFF) (*). The plot reports the CV for the parameter values
that satisfy the required yield (.0.9) and efficiency (.0.85). Yield and
efficiency are computed by searching the 2-D parameter space
consisting of the transcription rate constant for r32 and the association
constant between r32 and DnaK as follows,

km½1� ¼ 0:05 3 2x min�1 ðx ¼ 0; 1; 2; . . . ; 13Þ;
K ½4� ¼ 105 3 2y M�1 ðy ¼ 0; 1; 2; . . . ; 21Þ:

DOI: 10.1371/journal.pcbi.0020059.g007
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mutations in FtsH since FtsH null mutants have very high
levels of r32 and a half life of 40–60 min [20,21]. Such
tradeoffs between robustness and fragility seem to be a
recurring theme both in biological systems and in the design
of manmade machines.

Alternative Strategies for the Implementation of the Heat
Shock Response

The existing architecture of the heat shock response is not
the unique solution to achieve robustness and fast response
in a system whose objective is to rescue the cell upon protein
unfolding in a timely manner. Indeed, our mathematical
analysis indicates that a system implementing SEQ-FB with
FF (with no DEG-FB) is able to reproduce these character-
istics, albeit at the expense of a much higher level of r32

concentration. Indeed, in Proteus mirabilis, a c-proteobacteria
closely related to E. coli, control of r32 is implemented by
SEQ-FB with FF but no DEG-FB. Importantly, as we predict,
in this organism the levels of r32 are high at 30 8C and change
very little if at all upon shift to high temperature [22].
Likewise, only the activity of the E. coli abundant r-factor (rE)
that implements the periplasmic heat shock response is
regulated through its sequestration by the trans-membrane
protein RseA [23]. These variations raise questions about how
the DEG-FB strategy might have evolved, and the evolu-
tionary constraints that led to its existence in the cytoplasmic
heat shock response.

Connections of Modularity and Protocols to Evolvability
Engineering sciences constantly exploit the properties of

modular designs to rapidly advance technology. The basic
mechanical or electrical strategies that form the functional
core of a plane, a car, or a computer change only in rare
instances. It is often the superimposition of new modules and
their correct interface with older modules through stand-
ardized protocols that generate increased speed, reliability,
safety, and robustness. Modularity guarantees that the
complexity of a design is hidden in ‘‘black boxes’’ that
possess well-defined inputs, outputs, and functionality. At the
same time, standardized interfaces guarantee the plug-and-
play addition of other modules, without the need for
extensive fine adjustment to achieve coordination with the
existing modules. Therefore, modularity and protocols are
often prerequisites for smooth evolvability, and as such may
also have been extensively used in the evolution of complex
gene regulatory networks. For example, in the heat shock
response system, r32 acts as a hub that integrates various flux
modules (FF, SEQ-FB, DEG-FB) in interconnected loops
(Figure S4). Such architecture leaves room for evolvability
in a simple manner. Imagine for instance that at some point
in the evolutionary past of the heat shock system, FtsH
synthesis was not controlled by r32. Such a system, where the
degradation of r32 is not negatively regulated by a member of
the r32 regulon, would have experienced large stochastic
variability, necessitating the evolution of a mechanism for
noise attenuation. One possible scheme would have been to
evolve an independent controller that stabilizes the levels of
FtsH tightly around its desired value. Perhaps a more
straightforward solution to the problem is to employ an
interconnected loop whereby the FtsH module is evolved just
by fusing a promoter for binding of r32 to the FtsH gene
[24,25] (Figure S5). Other proteases such as HslVU, ClpAP,

and Lon are linked similarly to the r32 molecular module,
although these proteases seem to play little or no role in vivo
in the degradation of r32 [21]. Overall, approaches linking the
architectural features of cellular networks, their functionality
and performance, and their evolvability properties will
undoubtedly be crucial for the investigation of biological
complexity.

Materials and Methods

Molecular architecture in the heat shock response. In fast-growing
E. coli at 37 8C, the major sigma factor, r70, binds RNAP core enzyme
and directs RNAP to transcribe the genes necessary for normal
growth. Heat shock (i.e., the increase in temperature to 42 8C) causes
the amount of another sigma factor, r32, to increase [26]. This in turn
results in increased expression of the r32-regulated hsps (chaperones
and proteases). The heat shock response aims at refolding heat-
denatured proteins through the action of chaperones or degrading
such proteins by proteases as a measure to prevent them from
forming aggregates. The heat shock response depends primarily on
the regulation of r32 activity, stability, and synthesis [13–15]. The
activity of r32 is regulated through its sequestration by chaperones.
Chaperone-bound r32 is prevented from binding to RNAP, which
limits its transcription activity [26,27]. The stability of r32 is regulated
through its degradation by various proteases, predominantly FtsH,
although HslVU, ClpAP, and Lon may play minor roles in degrading
r32 in vivo [19,20]. FtsH degrades r32 in an ATP-dependent manner.
The synthesis of r32 is regulated at the translational level. The rpoH
mRNA forms a stable secondary structure which prevents the
initiation of translation at low temperature. Higher temperature
disrupts this secondary structure, inducing translation [15]. Figure 1
depicts the molecular mechanisms involved in the heat shock
response as described above. The detailed notation of biochemical
reactions is defined elsewhere [28,29].

These interactions result in a time course of the heat shock
response that proceeds as follows. Upon heat shock, there is an
increase in the cellular levels of unfolded proteins that sequester the
members of the chaperone team. This results in an increase in r32

activity and stability. At the same time, the synthesis of r32 increases,
resulting in its accumulation and leading to hsp induction. Therefore,
the level of r32 rapidly increases, reaching a peak. Afterward, the level
of active r32 is reduced by chaperone-mediated sequestration and
protease-mediated degradation of r32 until it reaches a new steady
state at high temperature.

Detailed mechanistic model of the heat shock response. Based on
the interactions described above, we built a detailed mathematical
model of the heat shock response (Table 1). The components and
kinetic parameters of the model are shown in Table 2 and Table 3,
respectively. In the model, we account for the regulation of r32

activity through the chaperone-mediated feedback control (SEQ-FB),
and for the regulation of r32 through the protease-mediated
feedback control (DEG-FB). We also include the feedforward control
that regulates the efficiency of r32translation as a step function of
temperature (FF). We take DnaK as the representative of cellular
chaperones and FtsH as representative of cellular proteases. There is
data indicating that the GroE/GroL/GroS chaperone machinery is
also involved in the inactivation of r32. However, the details of this
interaction are still an area of active research [30].

The model uses first order mass action kinetics to describe the
synthesis, proteolysis, and binding of proteins. We make the common
assumption that binding reactions occur on a faster timescale than
production and degradation of proteins. Therefore, we replace the
differential equations describing these fast reactions by algebraic
binding equations. This mathematical model has been automatically
built by using the CADLIVE system [31]. The kinetic parameters for
the wild-type heat shock were picked or estimated from the vast heat
shock literature. The simulated time course trajectories for r32 and
chaperone reproduced the qualitative behaviors of wild-type and
mutants (Figure S6).

Modular decompositions through modeling. A module has been
characterized as a subsystem that possesses a function that is
separable from that of other modules, in the sense that it is capable
of maintaining most of its identity when isolated or rearranged [4], or
is defined as ‘‘groups of nodes [in a graph] that are relatively isolated
from the rest of the system’’ [9]. We prefer an approach to modularity
that emphasizes connectivity and function over isolation. Indeed,
regulatory modules are not necessarily isolated, nor would they
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preserve their function if isolated or rearranged, except in very
structured and organized ways [32]. To provide a useful character-
ization of modularity, it is imperative to classify and identify different
types of modularity based on the level of detail or abstraction that
one is adopting. The resulting multi-resolution scheme can then be
used to assess different aspects of the modular decomposition,
zooming out from the molecular description (molecular modules) to
a block diagram–like picture (functional modules).

Molecular modules: Zooming in to the fine details. Molecular
modules are defined as molecular entities that implement the
mechanistic biological functionality and have identifiable interfaces
and interactions with other molecular modules. For example, r32 is
an integral molecular module that integrates key regulation
strategies. This definition of molecular modules is obvious in the
sense that they are the entities investigated in experimental settings.
The behavior of molecular modules is assumed to be stochastic in
nature but their orchestrated operation is often observed to be highly
robust and reliable.

Functional modules: Zooming out to the block diagram. At a lower
level of resolution, the components of a system can be divided into
‘‘functional groups’’ that we refer to as functional modules. This
functional decomposition is a routine procedure in disciplines like
control engineering, where the systems considered often have levels
of complexity almost comparable to biology (power networks, planes,
industrial processes) [7]. Therefore, we seek analogies with the
modules that are traditionally identified in control engineering
schemes. In such systems, the process to be controlled or regulated is
identified, and the rest of the network is classified in terms of the
function that it accomplishes to facilitate this regulation. Following
engineering terminology, we call the process to be regulated or
controlled the ‘‘plant.’’ The other typical functional modules usually
present in engineering systems include sensing and actuation
modules, in addition to a ‘‘controller’’ module that actively computes
the control signal based on the information provided by the other
modules. The output of the plant to be controlled is usually sensed
and the measurement provided to a logical unit, the controller. Based
on this output measurement, the controller devises a control law,
which is then fed to an actuator that drives the plant, therefore
regulating its output. A block represents each of these modules, and
the interconnection of such blocks is frequently referred to as a block
diagram.

Flux modules: Connecting the fine to the coarse. A pathway is
commonly defined as a linked set of biological reactions. The concept
of a pathway is very useful in comprehending the networks involved
in regulating the cell’s vital functions. We define a flux module as a
pathway that traces the fate and mechanisms of interaction of a
group of molecules involved together in the performance of a certain
function. A flux module ideally connects different functional
modules, but forms an entity that possesses its own functionality.
Therefore, a flux is essentially the flow of information in the network,
accompanied by a function tag that characterizes this flow. Notice
that different fluxes may use some parts of the same pathway to
accomplish distinct and identifiable functions. In terms of the
deterministic rate equations,

_x1 ¼ f11ðx1; x2; . . . xn; tÞ þ f12ðx1; x2; . . . xn; tÞ . . .þ f1mðx1; x2; . . . xn; tÞ
_x2 ¼ f21ðx1; x2; . . . xn; tÞ þ f22ðx1; x2; . . . xn; tÞ . . .þ f2mðx1; x2; . . . xn; tÞ

..

.

_xn ¼ fn1ðx1; x2; . . . xn; tÞ þ fn2ðx1; x2; . . . xn; tÞ . . .þ fnmðx1; x2; . . . xn; tÞ;

fluxes can be traced to be a collection of fij that establish a flow of
information with a specific functional role as defined above.
Feedback loops are simple examples of flux modules.

Criteria for system analysis. The main objective of the heat shock
regulatory system is to refold denatured proteins upon exposure of
the cells to higher than normal temperatures. However, a response
that accomplishes this function while, for instance, using an excess of
hsps cannot be evolutionarily favorable, as the production and
maintenance of these hsps represent an important metabolic burden.
Therefore, cells must achieve a fine balance between the protective
effect of the hsps and the metabolic burden of overexpressing them.
At the same time, the response should be of appropriate speed and
magnitude so as not to expose the cell to prolonged periods of
damage, and robust in the presence of environmental changes,
intrinsic noise, and intracellular interference from other cellular
subsystems. For example, sigma factors including r32, r38, r54, and
r70compete for binding to the limited number of RNAP [32]. The
consequence of this competition for the heat shock response is that
r32 is constantly exposed to disturbances from other sigma factors.

We quantify these various design requirements and assess their
implementation strategies by devising mathematical mutants where
certain structures present in the wild-type heat shock are absent, then
comparing the performance of the mutants to that of wild-type. The
performance criteria used in this procedure are as follows.

Comparison criteria and search for critical parameter space. Since
the objective of the heat shock response is to reduce the amounts of
unfolded proteins, we define the yield of the response as the fraction
of folded proteins (Pfold) in a pool of total proteins (Ptotal):

Yield ¼
Pf old

Ptotal
:

Although an excess amount of chaperone can be sufficient to refold
proteins, hence increasing the yield, it can cause a wasteful synthesis
burden for cell metabolism. Therefore, we define the efficiency of the
response as the ratio of chaperones that are actively involved in
refolding proteins (quantified by the amount bound to unfolded
proteins Pun:DnaK) to the total amount of chaperones in the cell:

Ef f iciency ¼ Pun : DnaK
Total DnaK

:

Robustness in engineering design and analysis is measured by the
system’s ability to resume successful operation in the presence of
signal and system uncertainties. We quantify the heat shock system’s
robustness to parametric fluctuations by calculating the sensitivity in
the level of the chaperones to perturbations related to r32. We define
sensitivity by the steady-state logarithmic gain:

Sensitivity ¼ lnðY2=Y1Þ
lnðX2=X1Þ

:

This sensitivity measure captures the amount of change in the total
DnaK from Y1 to Y2 induced by a change in the transcription rate
constant from X1 to X2.

The yield, efficiency, robustness, and speed of response criteria
described above are used systematically to characterize the functions
of the various structural components in the heat shock system and to
constrain parameter values in wild-type and mutant heat shock
models. For example, to characterize the transient response and the
sensitivity at steady state, the yield and efficiency are constrained to
be above a certain acceptable value. Comparison between wild-type
and mutants is only made for values of the parameters in these
models that yield a response satisfying the required yield and
efficiency. These parameters values are chosen by gridding the
appropriate parameter spaces over a wide range of values and
computing the corresponding control performance criteria. In this
analysis, we focus on the parameters of critical importance to the
synthesis, sequestration, and degradation of r32. For SEQ-FB, the
transcription rate constant for r32 (km[1]) and the association
constant between r32 and DnaK (K[4]) are selected as critical factors.
For DEG-FB, the FtsH-mediated degradation rate constant for r32

(kx[1]¼ kx[2]), the transcription rate constant for r32 (km[1]), and the
association constant between FtsH and r32 (K[5] ¼ K[6]) are
employed. For FF, the critical factor is considered to be the
translation efficiency (g).

Supporting Information

Figure S1. Mathematical Functional Decomposition of the Reduced
Order Heat Shock System

Found at DOI: 10.1371/journal.pcbi.0020059.sg001 (75 KB PDF).

Figure S2. Connection of Flux Modules to the Differential Equations
Describing the Reduced Qualitative Model

Found at DOI: 10.1371/journal.pcbi.0020059.sg002 (61 KB PDF).

Figure S3. Time Evolution of r32 (St) for a Reduced Qualitative Model
of the Heat Shock Response

Found at DOI: 10.1371/journal.pcbi.0020059.sg003 (83 KB PDF).

Figure S4. Definition of Interconnected Feedback Loops

Found at DOI: 10.1371/journal.pcbi.0020059.sg004 (65 KB PDF).

Figure S5. Protocol for Interconnected Feedback Loops

Evolution of the DEG-FB loop is used an example.

Found at DOI: 10.1371/journal.pcbi.0020059.sg005 (70 KB PDF).
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Figure S6. Time Evolution of r32 and DnaK for a Detailed
Mechanistic Model in Wild-Type and Mutants

Found at DOI: 10.1371/journal.pcbi.0020059.sg006 (70 KB PDF).

Protocol S1. Derivation of the Sensitivity Equation from the Reduced
Qualitative Model

Found at DOI: 10.1371/journal.pcbi.0020059.sd001 (60 KB DOC).

Table S1. Reduced Qualitative Model of the Heat Shock Response

(A) Mathematical equations.
(B) Lists of components and kinetic parameters (see also [10]).

Found at DOI: 10.1371/journal.pcbi.0020059.st001 (61 KB DOC).
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