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Towards a Theory of
Scale-Free Graphs: Definition,
Properties, and Implications
Lun Li, David Alderson, John C. Doyle, and Walter Willinger

Abstract. There is a large, popular, and growing literature on “scale-free” networks
with the Internet along with metabolic networks representing perhaps the canonical
examples. While this has in many ways reinvigorated graph theory, there is unfortu-
nately no consistent, precise definition of scale-free graphs and few rigorous proofs of
many of their claimed properties. In fact, it is easily shown that the existing theory
has many inherent contradictions and that the most celebrated claims regarding the
Internet and biology are verifiably false. In this paper, we introduce a structural metric
that allows us to differentiate between all simple, connected graphs having an identical
degree sequence, which is of particular interest when that sequence satisfies a power law
relationship. We demonstrate that the proposed structural metric yields considerable
insight into the claimed properties of SF graphs and provides one possible measure of
the extent to which a graph is scale-free. This structural view can be related to previ-
ously studied graph properties such as the various notions of self-similarity, likelihood,
betweenness and assortativity. Our approach clarifies much of the confusion surround-
ing the sensational qualitative claims in the current literature, and offers a rigorous
and quantitative alternative, while suggesting the potential for a rich and interesting
theory. This paper is aimed at readers familiar with the basics of Internet technology
and comfortable with a theorem-proof style of exposition, but who may be unfamiliar
with the existing literature on scale-free networks.

1. Introduction

One of the most popular topics recently within the interdisciplinary study of
complex networks has been the investigation of so-called “scale-free” graphs.
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Originally introduced by Barabási and Albert [Barabási and Albert 99], scale-
free (SF) graphs have been proposed as generic yet universal models of network
topologies that exhibit power law distributions in the connectivity of network
nodes. As a result of the apparent ubiquity of such distributions across many
naturally occurring and man-made systems, SF graphs have been suggested as
representative models of complex systems in areas ranging from the social sci-
ences (collaboration graphs of movie actors or scientific coauthors) to molecular
biology (cellular metabolism and genetic regulatory networks) to the Internet
(web graphs, router-level graphs, and AS-level graphs). Because these models
exhibit features not easily captured by traditional Erdös-Renýı random graphs
[Erdös and Renyi 59], it has been suggested that the discovery, analysis, and ap-
plication of SF graphs may even represent a “new science of networks” [Barabási
02, Dorogovtsev and Mendes 03].

As pointed out in [Bollobas and Riordan 03, Bollobas and Riordan 04], despite
the popularity of the SF network paradigm in the complex systems literature,
the definition of “scale-free” in the context of network graph models has never
been made precise, and the results on SF graphs are largely heuristic and ex-
perimental studies with “rather little rigorous mathematical work; what there is
sometimes confirms and sometimes contradicts the heuristic results” [Bollobas
and Riordan 03]. Specific usage of “scale-free” to describe graphs can be traced
to the observation in Barabási and Albert [Barabási and Albert 99] that “a com-
mon property of many large networks is that the vertex connectivities follow
a scale-free power-law distribution.” However, most of the SF literature [Al-
bert and Barabási 02, Albert et al. 99, Albert et al. 00, Barabási and Albert
99, Barabási et al. 99, Barabási and Bonabeau 03, Barabási et al. 03] identifies
a rich variety of additional (e.g., topological) signatures beyond mere power law
degree distributions in corresponding models of large networks. One such feature
has been the role of evolutionary growth or rewiring processes in the construction
of graphs. Preferential attachment is the mechanism most often associated with
these models, although it is only one of several mechanisms that can produce
graphs with power law degree distributions.

Another prominent feature of SF graphs in this literature is the role of highly
connected hubs. Power law degree distributions alone imply that some nodes in
the tail of the power law must have high degree, but “hubs” imply something
more and are often said to “hold the network together.” The presence of a hub-
like network core yields a “robust yet fragile” connectivity structure that has
become a hallmark of SF network models. Of particular interest here is that a
study of SF models of the Internet’s router topology is reported to show that
“the removal of just a few key hubs from the Internet splintered the system
into tiny groups of hopelessly isolated routers” [Barabási and Bonabeau 03].
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Thus, apparently due to their hub-like core structure, SF networks are said to
be simultaneously robust to the random loss of nodes (i.e., error tolerance), since
these tend to miss hubs, but fragile to targeted worst-case attacks (i.e., attack
vulnerability) [Albert et al. 00] on hubs. This latter property has been termed the
“Achilles’ heel” of SF networks, and it has featured prominently in discussions
about the robustness of many complex networks. Albert et al. [Albert et al. 00]
even claim to “demonstrate that error tolerance... is displayed only by a class of
inhomogeneously wired networks, called scale-free networks” (emphasis added).
We will use the qualifier SF hubs to describe high-degree nodes that are so located
as to provide these “robust yet fragile” features described in the SF literature,
and a goal of this paper is to clarify more precisely what topological features of
graphs are involved.

There are a number of properties in addition to power law degree distribu-
tions, random generation, and SF hubs that are associated with SF graphs, but
unfortunately, it is rarely made clear in the SF literature which of these features
define SF graphs and which features are then consequences of this definition.
This has led to significant confusion about the defining features or characteris-
tics of SF graphs and the applicability of these models to real systems. While
the usage of “scale-free” in the context of graphs has been imprecise, there is
nevertheless a large literature on SF graphs, particularly in the highest impact
general science journals. For purposes of clarity in this paper, we will use the
term SF graphs (or equivalently, SF networks) to mean those objects as studied
and discussed in this “SF literature,” and accept that this inherits from that
literature an imprecision as to what exactly SF means. One aim of this paper is
to capture as much as possible of the “spirit” of SF graphs by proving their most
widely claimed properties using a minimal set of axioms. Another is to reconcile
these theoretical properties with the properties of real networks, in particular
the router-level graphs of the Internet.

Recent research into the structure of several important complex networks pre-
viously claimed to be “scale-free” has revealed that, even if their graphs could
have approximately power law degree distributions, the networks in question
do not have SF hubs, that the most highly connected nodes do not necessarily
represent an “Achilles’ heel”, and that their most essential “robust, yet fragile”
features actually come from aspects that are only indirectly related to graph
connectivity. In particular, recent work in the development of a first-principles
approach to modeling the router-level Internet has shown that the core of that
network is constructed from a mesh of high-bandwidth, low-connectivity routers
and that this design results from tradeoffs in technological, economic, and per-
formance constraints on the part of Internet Service Providers (ISPs) [Li et
al. 04, Alderson et al. 05]. A related line of research into the structure of bio-
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logical metabolic networks has shown that claims of SF structure fail to capture
the most essential biochemical as well as “robust yet fragile” features of cellu-
lar metabolism and in many cases completely misinterpret the relevant biology
[Tanaka 05, Tanaka and Doyle 05]. This mounting evidence against the heart of
the SF story creates a dilemma in how to reconcile the claims of this broad and
popular framework with the details of specific application domains. In particular,
it is now clear that either the Internet and biology networks are very far from
“scale free”, or worse, the claimed properties of SF networks are simply false
at a more basic mathematical level, independent of any purported applications
[Doyle et al. 05].

The main purpose of this paper is to demonstrate that, when properly defined,
scale-free networks have the potential for a rigorous, interesting, and rich math-
ematical theory. Our presentation assumes an understanding of fundamental
Internet technology as well as comfort with a theorem-proof style of exposition,
but not necessarily any familiarity with existing SF literature. While we leave
many open questions and conjectures supported only by numerical experiments,
examples, and heuristics, our approach reconciles the existing contradictions and
recovers many claims regarding the graph theoretic properties of SF networks.
A main contribution of this paper is the introduction of a structural metric that
allows us to differentiate between all simple, connected graphs having an identi-
cal degree sequence, particularly when that sequence follows a power law. Our
approach is to leverage related definitions from other disciplines, where available,
and utilize existing methods and approaches from graph theory and statistics.
While the proposed structural metric is not intended as a general measure of all
graphs, we demonstrate that it yields considerable insight into the claimed prop-
erties of SF graphs and may even provide a view into the extent to which a graph
is scale-free. Such a view has the benefit of being minimal, in the sense that it
relies on few starting assumptions, yet yields a rich and general description of
the features of SF networks. While far from complete, our results are consistent
with the main thrust of the SF literature and demonstrate that a rigorous and
interesting “scale-free theory” can be developed, with very general and robust
features resulting from relatively weak assumptions. In the process, we resolve
some of the misconceptions that exist in the general SF literature and point
out some of the deficiencies associated with previous applications of SF models,
particularly to technological and biological systems.

The remainder of this article is organized as follows. Section 2 provides the
basic background material, including mathematical definitions for scaling and
power law degree sequences, a discussion of related work on scaling that dates
back as far as 1925, and various additional work on self-similarity in graphs. We
also emphasize here why high variability is a much more important concept than
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scaling or power laws per se. Section 3 briefly reviews the recent literature on
SF networks, including the failure of SF methods in Internet applications. In
Section 4, we introduce a metric for graphs having a power-law in their degree se-
quence, one that highlights the diversity of such graphs and also provides insight
into existing notions of graph structure such as self-similarity/self-dissimilarity,
motifs, and degree-preserving rewiring. Our metric is structural—in the sense
that it depends only on the connectivity of a given graph and not the process
by which the graph is constructed—and can be applied to any graph of inter-
est. Then, Section 5 connects these structural features with the probabilistic
perspective common in statistical physics and traditional random graph theory,
with particular connections to graph likelihood, degree correlation, and assorta-
tive/disassortative mixing. Section 6 then traces the shortcomings of the exist-
ing SF theory and uses our alternate approach to outline what sort of potential
foundation for a broader and more rigorous SF theory may be built from math-
ematically solid definitions. We also put the ensuing SF theory in a broader
perspective by comparing it with recently developed alternative models for the
Internet based on the notion of Highly Optimized Tolerance (HOT) [Carlson and
Doyle 02]. We conclude in Section 7 that many open problems remain, includ-
ing theoretical conjectures and the potential relevance of rigorous SF models to
applications other than technology.

2. Background

This section provides the necessary background for our investigation of what
it means for a graph to be scale-free. In particular, we present some basic
definitions and results in random variables, comment on approaches to the sta-
tistical analysis of high variability data, and review notions of scale-free and
self-similarity as they have appeared in related domains.

While the advanced reader will find much of this section elementary in nature,
our experience is that much of the confusion on the topic of SF graphs stems from
fundamental differences in the methodological perspectives between statistical
physics and that of mathematics or engineering. The intent here is to provide
material that helps to bridge this potential gap in addition to setting the stage
from which our results will follow.

2.1. Power Law and Scaling Behavior

2.1.1. Nonstochastic vs. stochastic definitions. A finite sequence y = (y1, y2, . . . , yn) of
real numbers, assumed without loss of generality always to be ordered such that
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y1 ≥ y2 ≥ . . . ≥ yn, is said to follow a power law or scaling relationship if

k = cyk
−α, (2.1)

where k is (by definition) the rank of yk, c is a fixed constant, and α is called
the scaling index. Since log k = log(c) − α log(yk), the relationship for the rank
k versus y appears as a line of slope −α when plotted on a log-log scale. In
this manuscript, we refer to the relationship (2.1) as the size-rank (or cumula-
tive) form of scaling. While the definition of scaling in (2.1) is fundamental to
the exposition of this paper, a more common usage of power laws and scaling
occurs in the context of random variables and their distributions. That is, as-
suming an underlying probability model P for a nonnegative random variable
X, let F (x) = P [X ≤ x] for x ≥ 0 denote the (cumulative) distribution func-
tion (CDF) of X, and let F̄ (x) = 1 − F (x) denote the complementary CDF
(CCDF). A typical feature of commonly-used distribution functions is that the
(right) tails of their CCDFs decrease exponentially fast, implying that all mo-
ments exist and are finite. In practice, this property ensures that any realization
(x1, x2, . . . , xn) from an independent sample (X1,X2, . . . , Xn) of size n having
the common distribution function F concentrates tightly around its (sample)
mean, thus exhibiting low variability as measured, for example, in terms of the
(sample) standard deviation.

In this stochastic context, a random variable X or its corresponding distribu-
tion function F is said to follow a power law or is scaling with index α > 0 if, as
x → ∞,

P [X > x] = 1 − F (x) ≈ cx−α, (2.2)

for some constant 0 < c < ∞ and a tail index α > 0. Here, we write f(x) ≈ g(x)
as x → ∞ if f(x)/g(x) → 1 as x → ∞. For 1 < α < 2, F has infinite variance but
finite mean, and for 0 < α ≤ 1, F has not only infinite variance but also infinite
mean. In general, all moments of F of order β ≥ α are infinite. Since relationship
(2.2) implies log(P [X > x]) ≈ log(c) − α log(x), doubly logarithmic plots of x

versus 1−F (x) yield straight lines of slope −α, at least for large x. Well-known
examples of power law distributions include the Pareto distributions of the first
and second kind [Johnson et al. 94]. In contrast, exponential distributions (i.e.,
P [X > x] = e−λx) result in approximately straight lines on semi-logarithmic
plots.

If the derivative of the cumulative distribution function F (x) exists, then
f(x) = d

dxF (x) is called the (probability) density function of X and implies
that the stochastic cumulative form of scaling or size-rank relationship (2.2) has
an equivalent noncumulative or size-frequency counterpart given by

f(x) ≈ cx−(1+α) (2.3)
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which appears similarly as a line of slope −(1 + α) on a log-log scale. However,
as discussed in more detail in Section 2.1.3 below, the use of this noncumulative
form of scaling has been a source of many common mistakes in the analysis and
interpretation of actual data and should generally be avoided.

Power-law distributions are called scaling distributions because the sole re-
sponse to conditioning is a change in scale; that is, if the random variable X

satisfies relationship (2.2) and x > w, then the conditional distribution of X

given that X > w is given by

P [X > x|X > w] =
P [X > x]
P [X > w]

≈ c1x
−α,

where the constant c1 is independent of x and is given by c1 = 1/w−α. Thus, at
least for large values of x, P [X > x|X > w] is identical to the (unconditional)
distribution P [X > x], except for a change in scale. In contrast, the exponential
distribution gives

P (X > x|X > w) = e−λ(x−w),

that is, the conditional distribution is also identical to the (unconditional) dis-
tribution, except for a change of location rather than scale. Thus we prefer the
term scaling to power law, but will use them interchangeably, as is common.

It is important to emphasize again the differences between these alternative
definitions of scaling. Relationship (2.1) is nonstochastic, in the sense that there
is no assumption of an underlying probability space or distribution for the se-
quence y. In what follows we will always use the term sequence to refer to such a
nonstochastic object y, and accordingly we will use nonstochastic to mean sim-
ply the absence of an underlying probability model. In contrast, the definitions
in (2.2) and (2.3) are stochastic and require an underlying probability model.
Accordingly, when referring to a random variable X, we will explicitly mean an
ensemble of values or realizations sampled from a common distribution function
F , as is common usage. We will often use the standard and trivial method of
viewing a nonstochastic model as a stochastic one with a singular distribution.

These distinctions between stochastic and nonstochastic models will be impor-
tant in this paper. Our approach allows for but does not require stochastics. In
contrast, the SF literature almost exclusively assumes some underlying stochastic
models, so we will focus some attention on stochastic assumptions. Exclusive fo-
cus on stochastic models is standard in statistical physics, even to the extent that
the possibility of nonstochastic constructions and explanations is largely ignored.
This seems to be the main motivation for viewing the Internet’s router topology
as a member of an ensemble of random networks rather than as an engineering
system driven by economic and technological constraints plus some randomness,



438 Internet Mathematics

which might otherwise seem more natural. Indeed, in the SF literature “ran-
dom” is typically used more narrowly than stochastic to mean, depending on
the context, exponentially, Poisson, or uniformly distributed. Thus phrases like
“scale-free versus random” (the ambiguity in “scale-free” notwithstanding) are
closer in meaning to “scaling versus exponential,” rather than “nonstochastic
versus stochastic.”

2.1.2. Scaling and high variability. An important feature of sequences that follow the
scaling relationship (2.1) is that they exhibit high variability, in the sense that
deviations from the average value or (sample) mean can vary by orders of mag-
nitude, making the average largely uninformative and not representative of the
bulk of the values. To quantify the notion of variability, we use the stan-
dard measure of (sample) coefficient of variation, which for a given sequence
y = (y1, y2, . . . , yn) is defined as

CV (y) = STD(y)/ȳ, (2.4)

where ȳ = n−1
∑n

k=1 yk is the average size or (sample) mean of y and STD(y) =
(
∑n

k=1(yk − ȳ)2/(n − 1))1/2 is the (sample) standard deviation, a commonly-
used metric for measuring the deviations of y from its average ȳ. The presence
of high variability in a sequence of values often contrasts greatly with the typ-
ical experience of many scientists who work with empirical data exhibiting low
variability—that is, observations that tend to concentrate tightly around the
(sample) mean and allow for only small to moderate deviations from this mean
value.

A standard ensemble-based measure for quantifying the variability inherent in
a random variable X is the (ensemble) coefficient of variation CV(X) defined as

CV (X) =
√

Var(X)/E(X), (2.5)

where E(X) and V ar(X) are the (ensemble) mean and (ensemble) variance of
X, respectively. If x = (x1, x2, . . . , xn) is a realization of an independent and
identically distributed (iid) sample of size n taken from the common distribution
F of X, it is easy to see that the quantity CV (x) defined in (2.4) is simply an
estimate of CV (X). In particular, if X is scaling with α < 2, then CV (X) = ∞,
and estimates CV (x) of CV (X) diverge for large sample sizes. Thus, random
variables having a scaling distribution are extreme in exhibiting high variability.
However, scaling distributions are only a subset of a larger family of heavy-tailed
distributions (see [Willinger et al. 04b] and references therein) that exhibit high
variability. As we will show, it turns out that some of the most celebrated
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claims in the SF literature (e.g., the presence of highly connected hubs) have as
a necessary condition only the presence of high variability and not necessarily
strict scaling per se. The consequences of this observation are far-reaching,
especially because it shifts the focus from scaling relationships, their tail indices,
and their generating mechanisms to an emphasis on heavy-tailed distributions
and identifying the main sources of high variability.

2.1.3. Cumulative vs. noncumulative log-log plots. While in principle there exists an un-
ambiguous mathematical equivalence between distribution functions and their
densities, as in (2.2) and (2.3), no such relationship can be assumed to hold in
general when plotting sequences of real or integer numbers or measured data cu-
mulatively and noncumulatively. Furthermore, there are good practical reasons
to avoid noncumulative or size-frequency plots altogether (a sentiment echoed
in [Newman 05b]), even though they are often used exclusively in some commu-
nities. To illustrate the basic problem, we first consider two sequences, ys and
ye, each of length 1,000, where ys = (ys

1, . . . , y
s
1000) is constructed so that its

values all fall on a straight line when plotted on doubly logarithmic (i.e., log-log)
scale. Similarly, the values of the sequence ye = (ye

1, . . . , ye
1000) are generated to

fall on a straight line when plotted on semi-logarithmic (i.e., log-linear) scale.
The MATLAB code for generating these two sequences is available for electronic
download [Doyle 05]. When ranking the values in each sequence in decreas-
ing order, we obtain the following unique largest (smallest) values, with their
corresponding frequencies of occurrence given in parenthesis,

ys = {10, 000(1), 6, 299(1), 4, 807(1), 3, 968(1), 3, 419(1), . . .

. . . , 130(77), 121(77), 113(81), 106(84), 100(84)},
ye = {1, 000(1), 903(1), 847(1), 806(1), 775(1), . . .

. . . , 96(39), 87(43), 76(56), 61(83), 33(180)},

and the full sequences are plotted in Figure 1.
In particular, the doubly logarithmic plot in Figure 1(a) shows the cumulative

or size-rank relationships associated with the sequences ys and ye: the largest
value of ys (i.e., 10,000) is plotted on the x-axis and has rank 1 (y-axis), the
second largest value of ys is 6,299 and has rank 2, all the way to the end, where
the smallest value of ys (i.e., 100) is plotted on the x-axis and has rank 1,000
(y-axis)—similarly for ye. In full agreement with the underlying generation
mechanisms, plotting on doubly logarithmic scale the rank-ordered sequence of
ys versus rank k results in a straight line; i.e., ys is scaling (to within integer
tolerances). The same plot for the rank-ordered sequence of ye has a pronounced
concave shape and decreases rapidly for large ranks—strong evidence for an
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Figure 1. Plots of exponential ye (circles) and scaling ys (squares) sequences. (a)
Doubly logarithmic size-rank plot: ys is scaling (to within integer tolerances) and
thus ys

k versus k is approximately a straight line. (b) Semi-logarithmic size-rank
plot: ye is exponential (to within integer tolerances) and thus ye

k versus k is
approximately a straight line on semi-logarithmic plots. (c) Doubly logarithmic
size-frequency plot: ye is exponential but appears incorrectly to be scaling. (d)
Semi-logarithmic size-frequency plot: ys is scaling but appears incorrectly to be
exponential.

exponential size-rank relationship. Indeed, as shown in Figure 1(b), plotting on
semi-logarithmic scale the rank-ordered sequence of ye versus rank k yields a
straight line; i.e., ye is exponential (to within integer tolerances). The same plot
for ys shows a pronounced convex shape and decreases very slowly for large rank
values—fully consistent with a scaling size-rank relationship. Various metrics for
these two sequences are

ye ys

(sample) mean 167 267

(sample) median 127 153

(sample) STD 140 504

(sample) CV .84 1.89

and all are consistent with exponential and scaling sequences of this size.
To highlight the basic problem caused by the use of noncumulative or size-

frequency relationships, consider Figure 1(c) and (d) that show on doubly log-
arithmic scale and semi-logarithmic scale, respectively, the noncumulative or
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size-frequency plots associated with the sequences ys and ye: the largest value
of ys is plotted on the x-axis and has frequency 1 (y-axis), the second largest
value of ys has also frequency 1, etc., until the end where the smallest value of
ys happens to occur 84 times (to within integer tolerances)—similarly for ye,
where the smallest value happens to occur 180 times. It is common to con-
clude incorrectly from plots such as these, for example, that the sequence ye is
scaling (i.e., plotting on doubly logarithmic scale size vs. frequency results in
an approximate straight line) and the sequence ys is exponential (i.e., plotting
on semi-logarithmic scale size vs. frequency results in an approximate straight
line)—exactly the opposite of what is correctly inferred about the sequences
using the cumulative or size-rank plots in Figure 1(a) and (b).

In contrast to the size-rank plots of the style in Figure 1(a)–(b) that depict
the raw data itself and are unambiguous, the use of size-frequency plots as in
Figure 1(c)–(d), while straightforward to describe low-variability data, creates
ambiguities and can easily lead to mistakes when applied to high variability
data. First, for high-precision measurements it is possible that each data value
appears only once in a sample set, making raw frequency-based data rather un-
informative. To overcome this problem, a typical approach is to group individual
observations into one of a small number of bins and then plot for each bin (x-
axis) the relative number of observations in that bin (y-axis). The problem is
that choosing the size and boundary values for each bin is a process generally
left up to the experimentalist, and this binning process can dramatically change
the nature of the resulting size-frequency plots as well as their interpretation (for
a concrete example, see Figure 10 in Section 6.1).

These examples have been artificially constructed specifically to dramatize the
effects associated with the use of cumulative (or size-rank) vs. noncumulative
(or size-frequency) plots for assessing the presence or absence of scaling in given
sequence of observed values. While they may appear contrived, errors such as
those illustrated in Figure 1 are easy to make and are widespread in the complex
systems literature. In fact, determining whether a realization of a sample of
size n generated from one and the same (unknown) underlying distribution is
consistent with a scaling distribution and then estimating the corresponding tail
index α from the corresponding size-frequency plots of the data is even more
unreliable. Even under the most idealized circumstances using synthetically
generated pseudo-random data, size-frequency plots can mislead as shown in
the following easily reproduced numerical experiments. Suppose that 1,000 (or
more) integer values are generated by pseudo-random independent samples from
the distribution F (x) = 1− x−1 (P (X ≥ x) = x−1) for x ≥ 1. For example, this
can be done with the MATLAB fragment x=floor(1./rand(1,1000)) where
rand(1,1000) generates a vector of 1,000 uniformly distributed floating point
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Figure 2. A common error when inferring/estimating scaling behavior. (a) 1,000
integer data points sampled from the scaling distribution P (X ≥ x) = x−1, for
x ≥ 1: The lower size-frequency plot (circles) tends to underestimate the scaling
index α; it supports a slope estimate of about −1.67 (dashed line), implying an
α-estimate of about 0.67 that is obviously inconsistent with the true value of
α = 1 (solid line). The size-rank plot of the exact same data (upper dots) clearly
supports a scaling behavior and yields an α-estimate that is fully consistent with
the true scaling index α = 1 (solid line). (b) 1,000 data points sampled from
an exponential distribution plotted on log-linear scale: The size-rank plot clearly
shows that the data are exponential and that scaling is implausible. (c) The
same data as in (b) plotted on log-log scale: Based on the size-frequency plot, it
is plausible to infer incorrectly that the data are consistent with scaling behavior,
with a slope estimate of about −2.5, implying an α-estimate of about 1.5.

numbers between 0 and 1 and floor rounds down to the next lowest integer. In
this case, discrete equivalents to equations (2.2) and (2.3) exist, and for x � 1,
the density function f(x) = P [X = x] is given by

P [X = x] = P [X ≥ x] − P [X ≥ x + 1]

= x−1 − (x + 1)−1

≈ x−2.

Thus it might appear that the true tail index (i.e., α = 1) could be inferred
from examining either the size-frequency or size-rank plots, but as illustrated in
Figure 2 and described in the caption, this is not the case.

Though there are more rigorous and reliable methods for estimating α (see,
for example, [Resnick 97]), the (cumulative) size-rank plots have significant ad-
vantages in that they show the raw data directly, and possible ambiguities in
the raw data notwithstanding, they are also highly robust to a range of mea-
surement errors and noise. Moreover, experienced readers can judge at a glance
whether a scaling model is plausible, and if so, what a reasonable estimate of
the unknown scaling parameter α should be. For example, that the scatter in
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the data in Figure 2(a) is consistent with a sample from P (X ≥ x) = x−1 can
be roughly determined by visual inspection, although additional statistical tests
could be used to establish this more rigorously. At the same time, even when the
underlying random variable X is scaling, size-frequency plots systematically un-
derestimate α and worse have a tendency to suggest that scaling exists where it
does not. This is illustrated dramatically in Figure 2(b)–(c), where exponentially
distributed samples are generated using floor(10*(1-log(rand(1,n)))). The
size-rank plot in Figure 2(b) is approximately a straight line on a semilogarith-
mic plot, consistent with an exponential distribution. The log-log size-frequency
plot Figure 2(c), however, could be used incorrectly to claim that the data is
consistent with a scaling distribution, a surprisingly common error in the SF
and broader complex systems literature. Thus, even if one a priori assumes a
probabilistic framework, (cumulative) size-rank plots are essential for reliably
inferring and subsequently studying high variability, and they therefore are used
exclusively in this paper.

2.1.4. Scaling: more “normal” than normal. While power laws in event size statistics in
many complex interconnected systems have recently attracted a great deal of
popular attention, some of the aspects of scaling distributions that are crucial
and important for mathematicians and engineers have been largely ignored in
the larger complex systems literature. This subsection will briefly review one
aspect of scaling that is particularly revealing in this regard and is a summary
of results described in more detail in [Mandelbrot 97, Willinger et al. 04b].

Gaussian distributions are universally viewed as “normal,” mainly due to the
well-known Central Limit Theorem (CLT). In particular, the ubiquity of Gaus-
sians is largely attributed to the fact that they are invariant and attractors under
aggregation of summands, required only to be independent and identically dis-
tributed (iid) and to have finite variance [Feller 71]. Another convenient aspect
of Gaussians is that they are completely specified by mean and variance, and the
CLT justifies using these statistics whenever their estimates robustly converge,
even when the data could not possibly be Gaussian. For example, much data
can only take positive values (e.g., connectivity) or have hard upper bounds but
can still be treated as Gaussian. It is understood that this approximation would
need refinement if additional statistics or tail behaviors are of interest. Expo-
nential distributions have their own set of invariance properties (e.g., conditional
expectation) that make them attractive models in some cases. The ease by which
Gaussian data is generated by a variety of mechanisms means that the ability
of any particular model to reproduce Gaussian data is not counted as evidence
that the model represents or explains other processes that yield empirically ob-
served Gaussian phenomena. However, a disconnect often occurs when data
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have high variability, that is, when variance or coefficient of variation estimates
don’t converge. In particular, the above type of reasoning is often misapplied to
the explanation of data that are approximately scaling, for reasons that we will
discuss below.

Much of science has focused so exclusively on low variability data and Gaussian
or exponential models that low variability is not even seen as an assumption. Yet
much real world data has extremely high variability as quantified, for example,
via the coefficient of variation defined in (2.5). When exploring stochastic models
of high variability data, the most relevant mathematical result is that the CLT
has a generalization that relaxes the finite variance (e.g., finite CV ) assumption,
allows for high variability data arising from underlying infinite variance distribu-
tions, and yields stable laws in the limit. There is a rich and extensive theory on
stable laws (see for example [Samorodnitsky and Taqqu 94]), which we will not
attempt to review but mention only the most important features. Recall that a
random variable U is said to have a stable law (with index 0 < α ≤ 2) if for any
n ≥ 2, there is a real number dn such that

U1 + U2 + · · · + Un
d= n1/αU + dn,

where U1, U2, . . . , Un are independent copies of U , and where d= denotes
equality in distribution. Following [Samorodnitsky and Taqqu 94], the stable
laws on the real line can be represented as a four-parameter family Sα(σ, β, µ),
with the index α, 0 < α ≤ 2; the scale parameter σ > 0; the skewness parameter
β, −1 ≤ β ≤ 1; and the location (shift) parameter µ, −∞ < µ < ∞. When 1 <

α < 2, the shift parameter is the mean, but for α ≤ 1, the mean is infinite. There
is an abrupt change in the tail behavior of stable laws at the boundary α = 2.
For α < 2, all stable laws are scaling in the sense that they satisfy condition
(2.2) and thus exhibit infinite variance or high variability; the case α = 2 is
special and represents a familiar, nonscaling distribution—the Gaussian (normal)
distribution; i.e., S2(σ, 0, µ) = N(µ, 2σ2), corresponding to the finite-variance or
low-variability case. While with the exception of Gaussian, Cauchy, and Levy
distributions, the distributions of stable random variables are not known in closed
form, they are known to be the only fixed points of the renormalization group
transformation and thus arise naturally in the limit of properly normalized sums
of iid scaling random variables. From an unbiased mathematical view, the most
salient features of scaling distributions are this and additional strong invariance
properties (e.g., to marginalization, mixtures, maximization) and the ease with
which scaling is generated by a variety of mechanisms [Mandelbrot 97, Willinger
et al. 04b]. Combined with the abundant high variability in real world data,
these features suggest that scaling distributions are in a sense more “normal”
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than Gaussians and that they are convenient and parsimonious models for high
variability data in as strong a sense as Gaussians or exponentials are for low-
variability data.

While the ubiquity of scaling is increasingly recognized and even highlighted
in the physics and the popular complexity literature [Bak 96, Buchanan 01,
Barabási 02, Ball 04], the deeper mathematical connections and their rich his-
tory in other disciplines have been largely ignored, with serious consequences.
Models of complexity using graphs, lattices, cellular automata, and sandpiles
preferred in physics and the standard laboratory-scale experiments that inspired
these models exhibit scaling only when finely tuned in some way. So even when
accepted as ubiquitous, scaling is still treated as arcane and exotic, and “emer-
gence” and “self-organization” are invoked to explain how this tuning might
happen [Alderson and Willinger 05]. For example, the fact that SF network
models supposedly replicate empirically observed scaling node degree relation-
ships that are not easily captured by traditional Erdös-Renýı random graphs
[Barabási and Albert 99] is presented as evidence for model validity. But given
the strong invariance properties of scaling distributions, as well as the multitude
of diverse mechanisms by which scaling can arise in the first place [Newman 05b],
it becomes clear that an ability to generate scaling distributions “explains” lit-
tle, if anything. Once high variability appears in real data, scaling relationships
become a natural outcome of the processes that measure them.

2.2. Scaling, Scale-Free, and Self-Similarity

Within the physics community it is common to refer to functions of the form
(2.3) as scale-free because they satisfy the following property:

f(ax) = g(a)f(x). (2.6)

As reviewed by Newman [Newman 05b], the idea is that an increase by a factor a

in the scale or units by which one measures x results in no change to the overall
density f(x) except for a multiplicative scaling factor. Furthermore, functions
consistent with (2.3) are the only functions that are scale-free in the sense of
(2.6)—free of a characteristic scale. This notion of “scale-free” is clear and could
be taken as simply another synonym for scaling and power law, but most actual
usages of “scale-free” appear to have a richer notion in mind, and they attribute
additional features, such as some underlying self-similar or fractal geometry or
topology, beyond just properties of certain scalar random variables.

One of the most widespread and longstanding uses of the term “scale-free”
has been in astrophysics to describe the fractal nature of galaxies. Using a
probabilistic framework, one approach is to model the distribution of galaxies
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as a stationary random process and express clustering in terms of correlations
in the distributions of galaxies (see the review [Fall 79] for an introduction). In
1977, Groth and Peebles [Groth and Peebles 77] proposed that this distribution
of galaxies is well described by a power-law correlation function, and this has
since been called scale-free in the astrophysics literature. Scale-free here means
that the fluctuation in the galaxy density have “nontrivial, scale-free fractal
dimension” and thus scale-free is associated with fractals in the spatial layout of
the universe.

Perhaps the most influential and revealing notion of “scale-free” comes from
the study of critical phase transitions in physics, where the ubiquity of power
laws is often interpreted as a “signature” of a universality in behavior as well
as in underlying generating mechanisms. An accessible history of the influence
of criticality in the SF literature can found in [Barabási 02, pp. 73–78]. Here,
we will briefly review criticality in the context of percolation, as it illustrates
the key issues in a simple and easily visualized way. Percolation problems are
a canonical framework in the study of statistical mechanics (see [Stauffer and
Aharony 92] for a comprehensive introduction). A typical problem consists of a
square n×n lattice of sites, each of which is either occupied or unoccupied. This
initial configuration is obtained at random, typically according to some uniform
probability, termed the density, and changes to the lattice are similarly defined in
terms of some stochastic process. The objective is to understand the relationship
among groups of contiguously connected sites, called clusters. One celebrated
result in the study of such systems is the existence of a phase transition at a
critical density of occupied sites, above which there exists with high probability
a cluster that spans the entire lattice (termed a percolating cluster) and below
which no percolating cluster exists. The existence of a critical density where
a percolating cluster “emerges” is qualitatively similar to the appearance of a
giant connected component in random graph theory [Bollobas 98].

Figure 3(a) shows an example of a random square lattice (n = 32) of unoc-
cupied white sites and a critical density (≈ .59) of occupied dark sites, shaded
to show their connected clusters. As is consistent with percolation problems at
criticality, the sequence of cluster sizes is approximately scaling, as seen in Figure
3(d), and thus there is wide variability in cluster sizes. The cluster boundaries are
fractal, and in the limit of large n, the same fractal geometry occurs throughout
the lattice and on all scales, one sense in which the lattice is said to be self-
similar and “scale-free.” These scaling, scale-free, and self-similar features occur
in random lattices if and only if (with unit probability in the limit of large n) the
density is at the critical value. Furthermore, at the critical point, cluster sizes
and many other quantities of interest have power law distributions, and these
are all independent of the details in two important ways. The first and most
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Figure 3. Percolation lattices with scaling cluster sizes. Lattices (a)–(c) have the
exact same scaling sequence of cluster sizes (d) and the same (critical) density
(≈ .59). While random lattices such as in (a) have been be called “scale-free,” the
highly structured lattices in (b) or (c) typically would not. This suggests that,
even within the framework of percolation, scale-free usually means something
beyond simple scaling of some statistics and refers to geometric or topological
properties.

celebrated is that they are universal, in the sense that they hold identically in a
wide variety of otherwise quite different physical phenomena. The other, which
is even more important here, is that all these power laws, including the scale-free
fractal appearance of the lattice, are unaffected if the sites are randomly rear-
ranged. Such random rewiring preserves the critical density of occupied sites,
which is all that matters in purely random lattices.

For many researchers, particularly those unfamiliar with the strong statistical
properties of scaling distributions, these remarkable properties of critical phase
transitions have become associated with more than just a mechanism giving
power laws. Rather, power laws themselves are often viewed as “suggestive” or
even “patent signatures” of criticality and “self-organization” in complex systems
generally [Barabási 02]. Furthermore, the concept of Self-Organized Criticality
(SOC) has been suggested as a mechanism that automatically tunes the density
to the critical point [Bak 96]. This has, in turn, given rise to the idea that power
laws alone could be “signatures” of specific mechanisms, largely independent of
any domain details, and the notion that such phenomena are robust to random
rewiring of components or elements has become a compelling force in much of
complex systems research.

Our point with these examples is that typical usage of “scale-free” is often
associated with some fractal-like geometry, not just macroscopic statistics that
are scaling. This distinction can be highlighted through the use of the percolation
lattice example, but contrived explicitly to emphasize this distinction. Consider
three percolation lattices at the critical density (where the distribution of cluster
sizes is known to be scaling) depicted in Figure 3(a)–(c). Even though these
lattices have identical cluster size sequences (shown in Figure 3(d)), only the
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random and fractal, self-similar geometry of the lattice in Figure 3(a) would
typically be called “scale-free,” while the other lattices typically would not and
do not share any of the other “universal” properties of critical lattices [Carlson
and Doyle 02]. Again, the usual use of “scale-free” seems to imply certain self-
similar or fractal-type features beyond simply following scaling statistics, and
this holds in the existing literature on graphs as well.

2.3. Scaling and Self-Similarity in Graphs

While it is possible to use “scale-free” as synonymous with simple scaling re-
lationships as expressed in (2.6), the popular usage of this term has generally
ascribed something additional to its meaning, and the terms “scaling” and “scale-
free” have not been used interchangeably, except when explicitly used to say that
“scaling” is “free of scale.” When used to describe many naturally occurring and
man-made networks, “scale-free” often implies something about the spatial, ge-
ometric, or topological features of the system of interest. (For a recent example
that illustrates this perspective in the context of the World Wide Web, see [Dill
et al. 02]). While there exists no coherent, consistent literature on this subject,
there are some consistencies that we will attempt to capture at least in spirit.
Here we review briefly some relevant treatments ranging from the study of river
networks to random graphs, including the study of network motifs in engineering
and biology.

2.3.1. Self-similarity of river channel networks. One application area where self-similar,
fractal-like, and scale-free properties of networks have been considered in great
detail has been the study of geometric regularities arising in the analysis of
tree-branching structures associated with river or stream channels [Horton 45,
Strahler 57, Hack 57, Marani et al. 91, Kirchner 93, Peckham 95, Tarboton
96, Dodds and Rothman 99]. Following [Peckham 95], consider a river network
modeled as a tree graph, and recursively assign weights (the Horton-Strahler
stream order numbers) to each link as follows. First, assign order 1 to all exterior
links. Then, for each interior link, determine the highest order among its child
links, say, ω. If two or more of the child links have order ω, assign to the
parent link order ω + 1; otherwise, assign order ω to the parent link. Order k

streams or channels are then defined as contiguous chains of order k links. A tree
whose highest-order stream has order Ω is called a tree of order Ω. Using this
Horton-Strahler stream ordering concept, any rooted tree naturally decomposes
into a discrete set of “scales,” with the exterior links labeled as order 1 streams
and representing the smallest scale or the finest level of detail and the order Ω
stream(s) within the interior representing the largest scale or the structurally
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Figure 4. Horton-Strahler streams of order 4. (a) Generic stream with segments
coded according to their order. (b) Self-similar tree without side tributaries:
branching number b = 2 and Tk = 0 for all k. (c) Self-similar tree with side
tributaries: branching number b = 2 but Tk = 2k−1 for k = 1, 2, 3. (d) Toeplitz
matrix of values Tω,ω−k = Tk, representing the side tributaries in (c).

coarsest level of detail. For example, consider the order 4 streams and their
different “scales” depicted in Figure 4.

To define topologically self-similar trees, consider the class of deterministic
trees where every stream of order ω has b ≥ 2 upstream tributaries of order ω−1
and Tω,k side tributaries of order k, with 2 ≤ ω ≤ Ω and 1 ≤ k ≤ ω−1. A tree is
called (topologically) self-similar if the corresponding matrix (Tω,k) is a Toeplitz
matrix; i.e., constant along diagonals, Tω,ω−k = Tk, where Tk is a number that
depends on k but not on ω and gives the number of side tributaries of order ω−k.
This definition (with the further constraint that Tk+1/Tk is constant for all k)
was originally considered in works by Tokunaga (see [Peckham 95] for references).
Examples of self-similar trees of order 4 are presented in Figure 4(b)–(c).

An important concept underlying this ordering scheme can be described in
terms of a recursive “pruning” operation that starts with the removal of the
order 1 exterior links. Such removal results in a tree that is more coarse and has
its own set of exterior links, now corresponding to the finest level of remaining
detail. In the next iteration, these order 2 streams are pruned, and this process
continues for a finite number of iterations until only the order Ω stream remains.
As illustrated in Figure 4(b)–(c), successive pruning is responsible for the self-
similar nature of these trees. The idea is that streams of order k are invariant
under the operation of pruning—they may be relabeled or removed entirely but
are never severed—and they provide a natural scale or level of detail for studying
the overall structure of the tree.

As discussed in [Rodŕıguez-Iturbe et al. 92], early attempts at explaining the
striking ubiquity of Horton-Strahler stream ordering was based on a stochastic
construction in which “it has been commonly assumed by hydrologists and geo-
morphologists that the topological arrangement and relative sizes of the streams
of a drainage network are just the result of a most probable configuration in a
random environment.” However, more recent attempts at explaining this reg-
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ularity have emphasized an approach based on different principles of optimal
energy expenditure to identify the universal mechanisms underlying the evolu-
tion of “the scale-free spatial organization of a river network” [Rodŕıguez-Iturbe
et al. 92, Rinaldo et al. 92]. The idea is that, in addition to randomness, neces-
sity in the form of different energy expenditure principles plays a fundamental
role in yielding the multiscaling characteristics in naturally occurring drainage
basins.

It is also interesting to note that while considerable attention in the litera-
ture on river or stream channel networks is given to empirically observed power
law relationships (commonly referred to as “Horton’s laws of drainage network
composition”) and their physical explanations, it has been argued in [Kirchner
93, Kirchner 94a, Kirchner 94b] that these “laws” are in fact a very weak test
of models or theories of stream network structures. The arguments are based
on the observation that because most stream networks (random or non-random)
appear to satisfy Horton’s laws automatically, the latter provide little compelling
evidence about the forces or processes at work in generating the remarkably reg-
ular geometric relationships observed in actual river networks. This discussion is
akin to the wide-spread belief in the SF network literature that since SF graphs
exhibit power law degree distributions, they are capable of capturing a distinc-
tive “universal” feature underlying the evolution of complex network structures.
The arguments provided in the context of the Internet’s physical connectivity
structure [Li et al. 04] are similar in spirit to Kirchner’s criticism of the interpre-
tation of Horton’s laws in the literature on river or stream channel networks. In
contrast to [Kirchner 93] where Horton’s laws are shown to be poor indicators of
whether or not stream channel networks are random, [Li et al. 04] makes it clear
that by their very design, engineered networks like the Internet’s router-level
topology are essentially non-random and that their randomly constructed (but
otherwise comparable) counterparts result in poorly-performing or dysfunctional
networks.

2.3.2. Scaling degree sequence and degree distribution. Statistical features of graph struc-
tures that have received extensive treatment include the size of the largest con-
nected component, link density, node degree relationships, the graph diameter,
the characteristic path length, the clustering coefficient, and the betweenness
centrality (for a review of these and other metrics see [Albert and Barabási
02, Newman 03, Dorogovtsev and Mendes 03]). However, the single feature that
has received the most attention is the distribution of node degrees and whether
or not it follows a power law.

For a graph with n vertices, let di = deg(i) denote the degree of node i,
1 ≤ i ≤ n, and call D = {d1, d2, . . . , dn} the degree sequence of the graph, again
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assumed without loss of generality always to be ordered d1 ≥ d2 ≥ . . . ≥ dn.
We will say a graph has scaling degree sequence D (or D is scaling) if for all
1 ≤ k ≤ ns ≤ n, D satisfies a power law size-rank relationship of the form
k dα

k = c, where c > 0 and α > 0 are constants, and where ns determines the
range of scaling [Mandelbrot 97]. Since this definition is simply a graph-specific
version of (2.1) that allows for deviations from the power law relationship for
nodes with low connectivity, we again recognize that doubly logarithmic plots of
dk versus k yield straight lines of slope −α, at least for large dk values.

This description of scaling degree sequence is general, in the sense that it
applies to any given graph without regard to how it is generated and without
reference to any underlying probability distributions or ensembles. That is, a
scaling degree sequence is simply an ordered list of integers representing node
connectivity and satisfying the above scaling relationship. In contrast, the SF
literature focuses largely on scaling degree distribution, and thus a given degree
sequence has the further interpretation as representing a realization of an iid
sample of size n generated from a common scaling distribution of the type (2.2).
This in turn is often induced by some random ensemble of graphs. This paper
will develop primarily a nonstochastic theory and thus focus on scaling degree
sequences, but it will clarify the role of stochastic models and distributions as
well. In all cases, we will aim to be explicit about which is assumed to hold.

For graphs that are not trees, a first attempt at formally defining and relating
the concepts of “scaling” or “scale-free” and “self-similar” through an appro-
priately defined notion of “scale invariance” is considered by Aiello et al. and
described in [Aiello et al. 02]. In short, Aiello et al. view the evolution of a
graph as a random process of growing the graph by adding new nodes and links
over time. A model of a given graph evolution process is then called “scale-free”
if coarse-graining in time yields scaled graphs that have the same power law de-
gree distribution as the original graph. Here “coarse-graining in time” refers to
constructing scaled versions of the original graph by dividing time into intervals,
combining all nodes born in the same interval into super-nodes, and connecting
the resulting super-nodes via a natural mapping of the links in the original graph.
For a number of graph growing models, including the Barabási-Albert construc-
tion, Aiello et al. show that the evolution process is “scale-free” in the sense of
being invariant with respect to time scaling (i.e., the frequency of sampling with
respect to the growth rate of the model) and independent of the parameter of the
underlying power law node degree distribution (see [Aiello et al. 02] for details).
Note that the scale invariance criterion considered in [Aiello et al. 02] concerns
exclusively the degree distributions of the original graph and its coarse-grained
or scaled counterparts. Specifically, the definition of “scale-free” considered by
Aiello et al. is not structural in the sense that it depends on a macroscopic statis-
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tic that is largely uninformative as far as topological properties of the graph are
concerned.

2.3.3. Network motifs. Another recent attempt at relating the notions of “scale-free”
and “self-similar” for arbitrary graphs through the more structurally driven con-
cept of “coarse-graining” is due to Itzkovitz et al. [Itzkovitz et al. 05]. More
specifically, the main focus in [Itzkovitz et al. 05] is on investigating the local
structure of basic network building blocks, termed motifs, that recur through-
out a network and are claimed to be part of many natural and man-made sys-
tems [Shen-Orr et al. 02, Milo et al. 02]. The idea is that by identifying motifs
that appear in a given network at much higher frequencies than in comparable
random networks, it is possible to move beyond studying macroscopic statistical
features of networks (e.g., power law degree sequences) and try to understand
some of the networks’ more microscopic and structural features. The proposed
approach is based on simplifying complex network structures by creating appro-
priately coarse-grained networks in which each node represents an entire pattern
(i.e., network motif) in the original network. Recursing on the coarse-graining
procedure yields networks at different levels of resolution, and a network is called
“scale-free” if the coarse-grained counterparts are “self-similar” in the sense that
the same coarse-graining procedure with the same set of network motifs applies
at each level of resolution. When applying their approach to an engineered
network (electric circuit) and a biological network (protein-signaling network),
Itzkovitz et al. found that while each of these networks exhibits well-defined
(but different) motifs, their coarse-grained counterparts systematically display
very different motifs at each level.

A lesson learned from the work in [Itzkovitz et al. 05] is that networks that
have scaling degree sequences need not have coarse-grained counterparts that
are self-similar. This further motivates appropriately narrowing the definition
of “scale-free” so that it does imply some kind of self-similarity. In fact, the
examples considered in [Itzkovitz et al. 05] indicate that engineered or biological
networks may be the opposite of “scale-free” or “self-similar”—their structure
at each level of resolution is different, and the networks are “scale-rich” or “self-
dissimilar.” As pointed out in [Itzkovitz et al. 05], this observation contrasts with
prevailing views based on statistical mechanics near phase-transition points that
emphasize how self-similarity, scale invariance, and power laws coincide in com-
plex systems. It also suggests that network models that emphasize the latter
views may be missing important structural features [Itzkovitz et al. 05, ?]. A
more formal definition of self-dissimilarity was recently given by Wolpert and
Macready [Wolpert and Macready 00, Wolpert and Macready 04], who proposed
it as a characteristic measure of complex systems. Motivated by a data-driven
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approach, Wolpert and Macready observed that many complex systems tend to
exhibit different structural patterns over different space and time scales. Us-
ing examples from biological and economic/social systems, their approach is to
consider and quantify how such complex systems process information at differ-
ent scales. Measuring a system’s self-dissimilarity across different scales yields a
complexity “signature” of the system at hand. Wolpert and Macready suggest
that by clustering such signatures, one obtains a purely data-driven, yet natural,
taxonomy for broad classes of complex systems.

2.3.4. Graph similarity and data mining. Finally, the notion of graph similarity is fun-
damental to the study of attributed graphs (i.e., objects that have an internal
structure that is typically modeled with the help of a graph or tree and that
is augmented with attribute information). Such graphs arise as natural models
for structured data observed in different database applications (e.g., molecular
biology, image or document retrieval). The task of extracting relevant or new
knowledge from such databases (data mining) typically requires some notion of
graph similarity, and there exists a vast literature dealing with different graph
similarity measures or metrics and their properties [Seidl 99, Chartrand et al. 98].
However, these measures tend to exploit graph features (e.g., a given one-to-one
mapping between the vertices of different graphs or a requirement that all graphs
have to be of the same order) that are specific to the application domain. For
example, a common similarity measure for graphs used in the context of pat-
tern recognition is the edit distance [Sanfeliu and Fu 83]. In the field of image
retrieval, the similarity of attributed graphs is often measured via the vertex
matching distance [Petrakis 02]. The fact that the computation of many of these
similarity measures is known to be NP-complete has motivated the development
of new and more practical measures that can be used for more efficient similarity
searches in large-scale databases (e.g., see [Kriegel and Schonauer 03]).

3. The Existing SF Story

In this section, we first review the existing SF literature describing some of the
most popular models and their most appealing features. This is then followed
by a brief critique of the existing theory of SF networks in general and in the
context of Internet topology in particular.

3.1. Basic Properties and Claims

The main properties of SF graphs that appear in the existing literature can be
summarized as follows:
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1. SF networks have scaling (power law) degree distribution.

2. SF networks can be generated by certain random processes, the foremost
among which is preferential attachment.

3. SF networks have highly connected hubs that “hold the network together”
and give the “robust yet fragile” feature of error tolerance but attack vul-
nerability.

4. SF networks are generic in the sense of being preserved under random
degree-preserving rewiring.

5. SF networks are self-similar.

6. SF networks are universal in the sense of not depending on domain-specific
details.

This variety of features suggests the potential for a rich and extensive theory.
Unfortunately, it is unclear from the literature which properties are necessary
and/or sufficient to imply the others and if any implications are strict or simply
“likely” for an ensemble. Many authors apparently define scale-free in terms
of just one property, typically scaling degree distribution or random generation,
and appear to claim that some or all of the other properties are then conse-
quences. A central aim of this paper is to clarify exactly what options there are
in defining SF graphs and deriving their additional properties. Ultimately, we
propose in Section 6.2 a set of minimal axioms that allow for the preservation
of the most common claims. However, first we briefly review the existing treat-
ment of the above properties, related historical results, and shortcomings of the
current theory, particularly as it has been frequently applied to the Internet.

The ambiguity regarding the definition of “scale-free” originates with the orig-
inal papers [Barabási and Albert 99, Albert et al. 00] but has continued since.
Here, SF graphs appear to be defined both as graphs with scaling or power
law degree distributions and as being generated by a stochastic construction
mechanism based on incremental growth (i.e., nodes are added one at a time)
and preferential attachment (i.e., nodes are more likely to attach to nodes that
already have many connections). Indeed, the apparent equivalence of scaling
degree distribution and preferential attachment, and the ability of thus-defined
(if ambiguously so) SF network models to generate node degree statistics that
are consistent with the ubiquity of empirically observed power laws, is the most
commonly cited evidence that SF network mechanisms and structures are in
some sense universal [Albert et al. 99, Albert et al. 00, Barabási 02, Barabási
and Albert 99, Barabási et al. 03].
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Models of preferential attachment giving rise to power law statistics actually
have a long history and are at least 80 years old. As presented by Mandel-
brot [Mandelbrot 97], one early example of research in this area was the work
of Yule [Yule 25], who in 1925 developed power law models to explain the ob-
served distribution of species within plant genera. Mandelbrot [Mandelbrot 97]
also documents the work of Luria and Delbrück, who in 1943 developed a model
and supporting mathematics for the explicit generation of scaling relationships
in the number of mutants in old bacterial populations [Luria and Delbrück 43].
A more general and popular model of preferential attachment was developed
by Simon [Simon 55] in 1955 to explain the observed presence of power laws
within a variety of fields, including economics (income distributions, city pop-
ulations), linguistics (word frequencies), and biology (distribution of mutants
in bacterial cultures). Substantial controversy and attention surrounded these
models in the 1950s and 1960s [Mandelbrot 97]. A recent review of this history
can also be found in [Mitzenmacher 04]. By the 1990s though these models
had been largely displaced in the popular science literature by models based on
critical phenomena from statistical physics [Bak 96], only to resurface recently
in the scientific literature in this context of “scale-free” networks [Barabási and
Albert 99]. Since then, numerous refinements and modifications to the origi-
nal Barabási-Albert construction have been proposed and have resulted in SF
network models that can reproduce power law degree distributions with any
α ∈ [1, 2], a feature that agrees empirically with many observed networks [Al-
bert and Barabási 02]. Moreover, the largely empirical and heuristic studies of
these types of “scale-free” networks have recently been enhanced by a rigorous
mathematical treatment that can be found in [Bollobas and Riordan 03] and
involves a precise version of the Barabási-Albert construction.

The introduction of SF network models, combined with the equally popular
(though less ambiguous) “small world” network models [Watts and Strogatz 98],
reinvigorated the use of abstract random graph models and their properties (par-
ticularly node degree distributions) to study a diversity of complex network sys-
tems. For example, Dorogovtsev and Mendes [Dorogovtsev and Mendes 03, p. 76]
provide a “standard programme of empirical research of a complex network”,
which for the case of undirected graphs consist of finding (1) the degree distribu-
tion, (2) the clustering coefficient, and (3) the average shortest-path length. The
presumption is that these features adequately characterize complex networks.
Through the collective efforts of many researchers, this approach has cataloged
an impressive list of real application networks, including communication net-
works (the WWW and the Internet), social networks (author collaborations,
movie actors), biological networks (neural networks, metabolic networks, pro-
tein networks, ecological and food webs), telephone call graphs, mail networks,
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power grids and electronic circuits, networks of software components, and en-
ergy landscape networks (again, comprehensive reviews of these many results are
widely available [Albert and Barabási 02, Barabási 02, Newman 03, Dorogovtsev
and Mendes 03, Pastor-Satorras and Vespignani 04]). While very different in
detail, these systems share a common feature in that their degree distributions
are all claimed to follow a power law, possibly with different tail indices.

Regardless of the definitional ambiguities, the use of simple stochastic con-
structions that yield scaling degree distributions and other appealing graph
properties represent for many researchers what is arguably an ideal applica-
tion of statistical physics to explaining and understanding complexity. Since SF
models have their roots in statistical physics, a key assumption is always that
any particular network is simply a realization from a larger ensemble of graphs,
with an explicit or implicit underlying stochastic model. Accordingly, this ap-
proach to understanding complex networks has focused on those networks that
are most likely to occur under an assumed random graph model and has aimed at
identifying or discovering macroscopic features that capture the “essence” of the
structure underlying those networks. Thus, preferential attachment offers a gen-
eral and hence attractive “microscopic” mechanism by which a growth process
yields an ensemble of graphs with the “macroscopic” property of power law node
degree distributions [Barabási et al. 99]. Second, the resulting SF topologies are
“generic.” Not only is any specific SF graph the generic or likely element from
such an ensemble, but also “... an important property of scale-free networks is
that [degree-preserving] random rewiring does not change the scale-free nature
of the network” (see Methods Supplement to [Jeong et al. 00]). Finally, this
ensemble-based approach has an appealing kind of “universality” in that it in-
volves no model-specific domain knowledge or specialized “design” requirements
and requires only minimal tuning of the underlying model parameters.

Perhaps most importantly, SF graphs are claimed to exhibit a host of startling
emergent consequences of universal relevance, including intriguing self-similar
and fractal properties (see Section 4.3 for details), small-world characteristics
[Amaral et al. 00], and hub-like cores. Perhaps the central claim for SF graphs is
that they have hubs, what we term SF hubs, which “hold the network together.”
As noted, the structure of such networks is highly vulnerable to (i.e., can be
fragmented by) attacks that target these hubs [Albert et al. 00]. At the same
time, they are resilient to attacks that knock out nodes at random, since a
randomly chosen node is unlikely to be a hub and thus its removal has minimal
effect on network connectivity. In the context of the Internet, where SF graphs
have been proposed as models of the router-level Internet [Yook et al. 02], this has
been touted “the Achilles’ heel of the Internet” [Albert et al. 00], a vulnerability
that has presumably been overlooked by networking engineers. Furthermore,
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the hub-like structure of SF graphs is such that the epidemic threshold is zero
for contagion phenomena [Pastor-Satorras and Vespignani 01, Ball 01, Patch
01, Pastor-Satorras and Vespignani 04], thus suggesting that the natural way
to stop epidemics, either for computer viruses/worms or biological epidemics
such as AIDS, is to protect these hubs [Dezsö and Barabási 02, Briesemeister
et al. 03]. Proponents of this modeling framework have further suggested that
the emergent properties of SF graphs contribute to truly universal behavior in
complex networks [Bianconi and Barabási 01] and that preferential attachment
as well is a universal mechanism at work in the evolution of these networks [Jeong
et al. 03, Dorogovtsev and Mendes 03].

3.2. A Critique of Existing Theory

The SF story has successfully captured the interest and imagination of re-
searchers across disciplines, and with good reason, as the proposed properties are
rich and varied; yet the existing ambiguity in its mathematical formulation and
many of its most essential properties has created confusion about what it means
for a network to be “scale-free.” One possible and apparently popular interpre-
tation is that scale-free means simply graphs with scaling degree sequences and
that this alone implies all other features listed in Section 3.1. We will show that
this is incorrect, and in fact none of the features follow from scaling alone. Even
relaxing this to random graphs with scaling degree distributions is by itself inad-
equate to imply any further properties. A central aim of this paper is to clarify
the reasons why these interpretations are incorrect and propose minimal changes
to fix them. The opposite extreme interpretation is that scale-free graphs are
defined as having all of the listed properties. We will show that this is possible in
the sense that the set of such graphs is not empty, but as a definition this leads
to two further problems. Mathematically, one would prefer fewer axioms, and we
will rectify this with a minimal definition. We will introduce a structural metric
that provides a view of the extent to which a graph is scale-free and from which
all the listed properties follow, often with necessary and sufficient conditions.
The other problem is that the canonical examples of apparent SF networks—the
Internet and biological metabolism—are then very far from scale-free in that
they have none of the above properties except perhaps for scaling degree distri-
butions. This is simply an unavoidable conflict between these properties and the
specifics of the applications and cannot be fixed.

As a result, a rigorous theory of SF graphs must either define scale-free more
narrowly than scaling degree sequences or distributions in order to have nontriv-
ial emergent properties, and thus lose central claims of applicability, or instead
define scale-free as merely scaling, but lose all the universal emergent features
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that have been claimed to hold for SF networks. We will pursue the former ap-
proach because we believe that it is most representative of the spirit of previous
studies and also because it is most inclusive of results in the existing literature.
At the most basic level, simply to be a nontrivial and novel concept, scale-free
clearly must mean more than a graph with scaling degree sequence or distribu-
tion. It must capture some aspect of the graph itself, not merely a sequence of
integers, stochastic or not, in which case the SF literature and this paper would
offer nothing new. Other authors may ultimate choose different definitions, but
in any case, the results in this paper clarify for the first time precisely what the
graph theoretic alternatives are regarding the implications of any of the possi-
ble alternative definitions. Thus, the definition of the word “scale-free” is much
less important than the mathematical relationship between their various claimed
properties and the connections with real world networks.

3.3. The Internet as a Case Study

To illustrate some key points about the existing claims regarding SF networks
as adopted in the popular literature and their relationship with scaling degree
distributions, we consider an application to the Internet where graphs are meant
to model Internet connectivity at the router level. For a meaningful explanation
of empirically observed network statistics, we must account for network design
issues concerned with technology constraints, economic factors, and network
performance [Li et al. 04]. Additionally, we should annotate the nodes and
links in connectivity-only graphs with domain-specific information such as router
capacity and link bandwidth in such a way that the resulting annotated graphs
represent technically realizable and functional networks.

3.3.1. The SF Internet. Consider the simple toy model of a hierarchical SF network
HSFnet shown in Figure 5(a), which has a modular graph constructed according
to a particular type of preferential attachment [Ravasz et al. 02] and to which are
then preferentially added degree-one end systems, yielding the power law degree
sequence shown in Figure 5(e). This type of construction has been suggested as a
SF model of both the Internet and biology, both of which are highly hierarchical
and modular [Barabási et al. 03]. The resulting graph has all the features listed
in Section 3.1 as characteristics of SF networks and is easily visualized and thus
convenient for our comparisons. Note that the highest-degree nodes in the tail
of the degree sequence in Figure 5(e) correspond to the SF hub nodes in the SF
network HSFnet, Figure 5(a). This confirms the intuition behind the popular SF
view that power law degree sequences imply the existence of SF hubs that are
crucial for global connectivity. If such features were true for the real Internet,
this finding would certainly be startling and profound, as it directly contradicts
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Figure 5. Network graphs having exactly the same number of nodes and links,
as well as the same (power law) degree sequence. As toy models of the router-
level Internet, all graphs are subject to the same router technology constraints
and the same traffic demand model for routers at the network periphery. (a)
Hierarchical scale-free (HSF) network: Following roughly a recently proposed
construction that combines scale-free structure and inherent modularity in the
sense of exhibiting an hierarchical architecture [Ravasz et al. 02], we start with a
small three-pronged cluster and build a three-tier network à la Ravasz-Barabási,
adding routers at the periphery roughly in a preferential manner. (b) Random
network: This network is obtained from the HSF network in (a) by performing
a number of pairwise random degree-preserving rewiring steps. (c) Poor design:
In this heuristic construction, we arrange the interior routers in a line, pick
a node towards the middle to be the high-degree, low-bandwidth bottleneck,
and establish connections between high-degree and low-degree nodes. (d) HOT
network: The construction mimics the build-out of a network by a hypothetical
ISP. It produces a three-tier network hierarchy in which the high-bandwidth, low-
connectivity routers live in the network core while routers with low-bandwidth
and high-connectivity reside at the periphery of the network. (e) Node degree
sequence for each network. Only di > 1 are shown.

the Internet’s legendary and most clearly understood robustness property, i.e.,
it’s high resilience to router failures [Clark 88].

Figure 5 also depicts three other networks with the exact same degree sequence
as HSFnet. The variety of these graphs suggests that the set of all connected
simple graphs (i.e., no self-loops or parallel links) having exactly the same degree
sequence shown in Figure 5(e) is so diverse that its elements appear to have
nothing in common as graphs beyond what trivially follows from having a fixed
(scaling) degree sequence. They certainly do not appear to share any of the
features summarized above as conventionally claimed for SF graphs. Even more
striking are the differences in their structures and annotated bandwidths (i.e.,
gray-shading of links and nodes in Figure 5). For example, while the graphs
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in Figure 5(a) and (b) exhibit the type of hub nodes typically associated with
SF networks, the graph in Figure 5(d) has its highest-degree nodes located at
the network’s peripheries. We will show this provides concrete counterexamples
to the idea that power law degree sequences imply the existence of SF hubs.
This then creates the obvious dilemma as to the concise meaning of a “scale-free
graph” as outlined above.

3.3.2. A toy model of the real Internet. In terms of using SF networks as models for
the Internet’s router-level topology, recent Internet research has demonstrated
that the real Internet is nothing like Figure 5(a), size issues notwithstanding,
but is at least qualitatively more like the network shown in Figure 5(d) [Li et
al. 04, Doyle et al. 05]. We label this network HOTnet (for Heuristically Optimal
Topology) and note that its overall power law degree sequence comes from high-
degree routers at the network periphery that aggregate the traffic of end users
having low bandwidth demands, while supporting aggregate traffic flows with
a mesh of low-degree core routers [Li et al. 04]. In fact, as we will discuss in
greater detail in Section 6, there is little evidence that the Internet as a whole
has scaling degree or even high variability and much evidence to the contrary, for
many of the existing claims of scaling are based on a combination of relying on
highly ambiguous data and making a number of statistical errors, some of them
similar to those illustrated in Figures 1 and 2. What is true is that a network
like HOTnet is consistent with existing technology and could in principle be the
router-level graph for some small but plausible network. Thus, a network with a
scaling degree sequence in its router graph is plausible even if the actual Internet
is not scaling. It would, however, look qualitatively like HOTnet and nothing
like HSFnet.

To see in what sense HOTnet is heuristically optimal, note that from a network-
design perspective an important question is how well a particular topology is able
to carry a given demand for traffic while fully complying with actual technology
constraints and economic factors. Here, we adopt as standard metric for network
performance the maximum throughput of the network under a “gravity model”
of end-user traffic demands [Zhang et al. 03]. The latter assumes that every
end node i has a total bandwidth demand xi, that two-way traffic is exchanged
between all pairs (i, j) of end nodes i and j, and that the flow Xij of traffic
between i and j is given by Xij = ρxixj , where ρ is some global constant, and
is otherwise uncorrelated from all other flows. Our performance measure for a
given network g is then its maximum throughput with gravity flows, computed
as

Perf(g) = max
ρ

∑
ij

Xij , such that RX ≤ B, (3.1)
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where R is the routing matrix obtained using standard shortest-path routing.
R = [Rkl], with Rkl = 1 if flow l passes through router k and Rkl = 0 otherwise.
X is the vector of all flows Xij , indexed to match the routing matrix R, and B

is a vector consisting of all router bandwidth capacities.
An appropriate treatment of router bandwidth capacities represented in B

is important for computing network performance and merits additional expla-
nation. Due to fundamental limits in technology, routers must adhere to flow
conservation constraints in the total amount of traffic that they process per unit
of time. Thus, routers can support a large number of low-bandwidth connections
or a smaller number of high-bandwidth connections. In many cases, additional
routing overhead actually causes the total router throughput to decrease as the
number of connections gets large, and we follow the presentation in [Li et al. 04]
in choosing the term B to correspond with an abstracted version of a widely de-
ployed Cisco product (for details about this abstracted constraint and the factors
affecting real router design, we refer the reader to [Alderson 04, Li et al. 04]).

The application of this network performance metric to the four graphs in Fig-
ure 5 shows that although they have the same degree sequence, they are very
different from the perspective of network engineering, and that these differences
are significant and critical. For example, the SF network HSFnet in Figure 5(a)
achieves a performance of Perf(HSFnet) = 6.17 × 108 bps, while the HOT
network HOTnet in Figure 5(d) achieves a performance of Perf(HOTnet) =
2.93×1011 bps, which is greater by more than two orders of magnitude. The rea-
son for this vast difference is that the HOT construction explicitly incorporates
the tradeoffs between realistic router capacities and economic considerations in
its design process while the SF counterpart does not.

The actual construction of HOTnet is fairly straightforward, and while it has
high performance, it is not formally optimal. We imposed the constraints that it
must have exactly the same degree sequence as HSFnet and that it must satisfy
the router degree/bandwidth constraints. For a graph of this size, the design then
easily follows by inspection and mimics in a highly abstracted way the design of
real networks. First, the degree-one nodes are designated as end-user hosts and
placed at the periphery of the network, though geography per se is not explicitly
considered in the design. These are then maximally aggregated by attaching
them to the highest-degree nodes at the next level in from the periphery, leaving
one or two links on these “access router” nodes to attach to the core. The lowest
degree of these access routers are given two links to the core, which reflects
that low-degree access routers are capable of handling higher-bandwidth hosts,
and such high-value customers would likely have multiple connections to the
core. At this point there are just four low-degree nodes left, and these become
the highest-bandwidth core routers and are connected in a mesh, resulting in
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the graph in Figure 5(d). While some rearrangements are possible, all high-
performance networks using a gravity model and the simple router constraints
that we have imposed would necessarily look essentially like HOTnet. They
would all have the highest-degree nodes connected to degree-one nodes at the
periphery, and they would all have a low-degree, mesh-like core.

Another feature that has been highlighted in the SF literature is the attack
vulnerability of high-degree hubs. Here again, the four graphs in Figure 5 are
illustrative of the potential differences between graphs having the same degree
sequence. Using the performance metric defined in (3.1), we compute the per-
formance of each graph without disruption (i.e., the complete graph), after the
loss of high-degree nodes, and after the loss of the most important (i.e., worst
case) nodes. In each case, when removing a node, we also remove any corre-
sponding degree-one end hosts that also become disconnected, and we compute
performance over shortest-path routes between remaining nodes but in a manner
that allows for rerouting. We find that for HSFnet, removal of the highest-degree
nodes does in fact disconnect the network as a whole, and this is equivalent to
the worst-case attack for this network. In contrast, removal of the highest-degree
nodes results in only minor disruption to HOTnet, but a worst-case attack (here,
this is the removal of the low-degree core routers) does disconnect the network.
The results are summarized below.

Network Complete High-Degree Worst-Case

Performance Graph Nodes Removed Nodes Removed

HSFnet 5.9197e + 09 Disconnected = ‘High-Degree’ case

HOTnet 2.9680e + 11 2.7429e + 11 Disconnected

This example illustrates two important points. The first is that HSFnet does
indeed have all the graph theoretic properties listed in Section 3.1 that are at-
tributed to SF networks, including attack vulnerability, while HOTnet has none
of these features except for scaling degree. Thus, the set of graphs that have
the standard scale-free attributes is neither empty nor trivially equivalent to
graphs having scaling degree. The second point is that the standard SF models
are in all important ways exactly the opposite of the real Internet and fail to
capture even the most basic features of the Internet’s router-level connectivity.
While the intuition behind these claims is clear from inspection of Figure 5 and
the performance comparisons, full clarification of these points requires the re-
sults in the rest of this paper and additional details on the Internet [Alderson
04, Li et al. 04]. These observations naturally cast doubts on the relevance of
conventional SF models in other application areas where domain knowledge and
specific functional requirements play a similarly crucial role as in the Internet
context. The other most-cited SF example is metabolic networks in biology,
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where many recent SF studies have focused on abstract graphs in which nodes
represent metabolites and two nodes are connected if they are involved in the
same reaction. In these studies, observed power laws for the degree sequences
associated with such graphs have been used to claim that metabolic networks are
scale-free [Barabási and Oltvai 04]. Though the details are far more complicated
here than in the Internet story, recent work in [Tanaka 05] has shown that there
is a largely parallel story in that the SF claims are completely inconsistent with
the actual biology, despite their superficial appeal and apparent popularity.

4. A Structural Approach

In this section, we show that considerable insight into the features of SF graphs
and models is available from a metric that measures the extent to which high-
degree nodes connect to other high-degree nodes. As we will show, such a metric
is both necessary and useful for explaining the extreme differences between net-
works that have identical degree sequence, especially if it is scaling. By focusing
on a graph’s structural properties and not on not how it was generated, this ap-
proach does not depend on an underlying random graph model but is applicable
to any graph of interest.

4.1. The s-Metric

Let g be an undirected, simple, connected graph having n = |V| nodes and l = |E|
links, where V and E are the sets of nodes and links, respectively. As before,
define di to be the degree of node i ∈ V, define D = {d1, d2, . . . , dn} to be the
degree sequence for g (again assumed to be ordered), and let G(D) denote the
set of all connected simple graphs having the same degree sequence D. Note
that most graphs with scaling degree will be neither simple nor connected, so
this is an important and nontrivial restriction. Even with these constraints, it
is clear based on the previous examples that the elements of G(D) can be very
different from one another, so that in order to constitute a nontrivial concept,
“scale-free” should mean more than merely that D is scaling and should depend
on additional topological or structural properties of the elements in G(D).

Definition 4.1. For any graph g having fixed degree sequence D, we define the metric

s(g) =
∑

(i,j)∈E
didj . (4.1)

Note that s(g) depends only on the graph g and not explicitly on the process
by which it is constructed. Implicitly, the metric s(g) measures the extent to
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which the graph g has a hub-like core and is maximized when high-degree nodes
are connected to other high-degree nodes. This observation follows from the
Rearrangement Inequality [Wu and Liu 95], which states that if a1 ≥ a2 ≥
· · · ≥ an and b1 ≥ b2 ≥ · · · ≥ bn, then for any permutation (a′

1, a
′
2, · · · , a′

n) of
(a1, a2, · · · , an), we have

a1b1 + a2b2 + · · · + anbn ≥ a′
1b1 + a′

2b2 + · · · + a′
nbn

≥ anb1 + an−1b2 + · · · + a1bn.

Since high s(g)-values are achieved only by connecting high-degree nodes to each
other, and low s(g)-values are obtained by connecting high-degree nodes only
to low-degree nodes, the s-metric moves beyond simple statements concerning
the presence of hub nodes (as is true for any degree sequence D that has high
variability) and attempts to quantify what role such hubs play in the overall
structure of the graph. In particular, as we will show in Section 4.2, graphs with
relatively high s(g) values have a hub-like core in the sense that these hubs play a
central role in the overall connectivity of the network. We will also demonstrate
that the metric s(g) provides a view that is not only mathematically convenient
and rigorous, but also practically useful as far as what it means for a graph to
be “scale-free.”

4.1.1. Graph diversity and the Perf(g) vs. s(g) plane. Although our interest in this
paper will be in graphs for which the degree sequence D is scaling, we can
compute s(g) with respect to any background set G of graphs, and we need not
restrict the set to scaling or even to connected or simple graphs. Moreover, for
any background set, there exists a graph whose connectivity maximizes the s-
metric defined in (4.1), and we refer to this as an smax graph. The smax graphs for
different background sets are of interest since they are essentially unique and also
have the most hub-like core structure. Graphs with low s-values are also highly
relevant, but unlike smax graphs they are extremely diverse with essentially no
features in common with each other or with other graphs in the background set
except the degree sequence D.

Graphs with high variability and/or scaling in their degree sequence are of
particular interest, however, and not simply because of their association with
SF models. Intuitively, scaling degrees appear to create great diversity in G(D).
Certainly the graphs in Figure 5 are extremely diverse, despite having identical
scaling degree D, but to what extent does this depend on D being scaling? As a
partial answer, note that at the extremes of variability are m-regular graphs with
CV (D) = 0, which have D = {m,m,m, . . . ,m} for some m, and perfect star-like
graphs with D = {n− 1, 1, 1, 1, . . . , 1}, which have maximal CV (D) ≈ √

n/2. In
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Figure 6. Exploration of the space of connected network graphs having exactly
the same (power law) degree sequence. Values for the four networks are shown to-
gether with the values for other networks obtained by pairwise degree-preserving
rewiring. Networks that are one rewiring away from their starting point are
shown in a corresponding shape, while other networks obtained from more than
one rewiring are shown in gray. Ultimately, only a careful design process explic-
itly incorporating technological constraints, traffic demands, or link costs yields
high-performance networks. In contrast, equivalent networks resulting from even
carefully crafted random constructions result in poor-performing networks.

both of these extremes, all graphs in G(D) are isomorphic and thus have only
one value of s(g) for all g ∈ G(D), so from this measure the space G(D) of graphs
lacks any diversity. In contrast, when D is scaling with α < 2, CV (D) → ∞
and it is easy to construct g such that s(g)/smax → 0 as n → ∞, suggesting a
possibly enormous diversity in G(D).

Before proceeding with a discussion of some of the features of the s-metric
as well as for graphs having high s(g) values, we revisit the four toy networks
in Figure 5 and consider the combined implications of the performance-oriented
metric Perf(g) introduced in (3.1) and the connectivity-specific metric s(g) given
in Definition 4.1. Figure 6 is a projection of g ∈ G(D) onto a plane of Perf(g)
versus s(g) and will be useful throughout in visualizing the extreme diversity in
the set G(D) for D in Figure 5. Of relevance to the Internet application is that
graphs with high s(g)-values tend to have low performance, although a low s(g)-
value is no guarantee of good performance, as seen by the network in Figure 5(c)
which has both small s(g) and small Perf(g). The additional points in the Perf(g)
vs. s(g) plane involve degree-preserving rewiring and will be discussed in more
detail in Section 4.4.

These observations undermine the claims in the SF literature that are based
on scaling degree alone implying any additional graph properties. On the other
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hand, they also suggest that the sheer diversity of G(D) for scaling D makes it
an interesting object of study. We won’t further compare G(D) for scaling versus
nonscaling D or attempt to define “diversity” precisely here, though these are
clearly interesting topics. We will focus on exploring the nature of the diversity
of G(D) for scaling D such as in Figure 5.

In what follows, we will provide evidence that graphs with high s(g) enjoy cer-
tain self-similarity properties, and we also consider the effects of random degree-
preserving rewiring on s(g). In so doing, we argue that the s-metric as well as
many of the other definitions and properties that we will present are of interest
for any graph or any set of graphs. However, we will continue to focus our atten-
tion primarily on simple connected graphs having scaling degree sequences. The
main reason is that many applications naturally have simple connected graphs.
For example, while the Internet protocols in principle allow router connectivity
to be nonsimple, it is relatively rare and has little impact on network properties.
Nevertheless, using other sets in many cases is preferable and will arise naturally
in the sequel. Furthermore, while our interest will be on simple connected graphs
with scaling degree sequence, we will often specialize our presentation to trees,
in order to simplify the development and maximize contact with the existing SF
literature. To this end, we will exploit the construction of the smax graph to
sketch some of these relationships in more detail.

4.1.2. The smax graph and preferential attachment. Given a particular degree sequence D,
it is possible to construct the smax graph of G(D) using a deterministic procedure,
and both the generation process and its resulting structure are informative about
the s(g) metric. Here, we describe this construction at a high level of abstraction
(with all details deferred to Appendix A) in order to provide appropriate context
for the discussion of key features that is to follow.

The basic idea for constructing the smax graph is to order all potential links
(i, j) for all i, j ∈ V according to their weight didj and then add them one at a
time in a manner that results in a simple connected graph having degree sequence
D. While simple enough in concept, this type of greedy heuristic procedure may
have difficulty achieving the intended sequence D due to the global constraints
imposed by connectivity requirements. While the specific conditions under which
this procedure is guaranteed to yield the smax graph are deferred to Appendix A,
we note that this type of construction works well in practice for the networks
under consideration in this paper, particularly those in Figure 5.

In cases where the intended degree sequence D satisfies
∑

i di = 2(n − 1),
all simple connected graphs having degree sequence D correspond to trees (i.e.,
acyclic graphs), and this simple construction procedure is guaranteed to result
in an smax graph. Acyclic smax graphs have several nice properties that we will
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exploit throughout this presentation. It is worth noting that since adding links
to a tree is equivalent to adding nodes one at a time, construction of acyclic
smax graphs can be viewed essentially as a type of deterministic preferential
attachment. Perhaps more importantly, by its construction the smax tree has a
natural ordering within its overall structure, which we now summarize.

Recall that a tree can be organized into hierarchies by designating a single
vertex as the root of the tree from which all branches emanate. This is equivalent
to assigning a direction to each arc such that all arcs flow away from the root. As
a result, each vertex of the graph becomes naturally associated with a particular
level of the hierarchy, adjacent vertices are separated by a single level, and the
position of a vertex within the hierarchy is in relation to the root. For example,
assuming the root of the tree is at level 0 (the “highest” level), then its neighbors
are at level 1 (“below” level 0), their other neighbors in turn are at level 2
(“below” level 1), and so on.

Mathematically, the choice of the root vertex is an arbitrary one, however for
the smax tree, the vertex with largest degree sits as the natural root and is the
most central (a notion that we will formalize in the next section). With this
selection, two vertices u, v ∈ V that are directly connected to each other in the
acyclic smax graph have the following relative position within the hierarchy. If
du ≥ dv, then vertex u is one level above vertex v (alternatively, we say that
vertex u is upstream of vertex v or that vertex v is downstream from vertex u).
Thus, moving up the hierarchy of the tree (i.e., upstream) means that vertex
degrees are (eventually) becoming larger, and moving down the hierarchy (i.e.,
downstream) means that vertex degrees are (eventually) becoming smaller.

In order to illustrate this natural ordering within the smax tree, we introduce
the following notation. For any vertex v ∈ V, let N (v) denote the set of neigh-
boring vertices for v, where |N (v)| = dv for simple connected graphs. For an
acyclic graph g, define g̃(v) to be the subgraph (subtree) of vertex v; that is, g̃(v)

is the subtree containing vertex v along with all downstream nodes. Since the
notion of upstream/downstream is relative to the overall root of the graph, for
convenience we will additionally use the notation g̃(v,u) to represent the sub-
graph of the vertex v that is itself connected to upstream neighbor vertex u. The
(ordered) degree sequence of the subtree g̃(v) (equivalently for g̃(v,u)) is then
D(g̃(v)) = {d(v)

1 , d
(v)
2 , . . . }, where d

(v)
1 = dv and the rest of the sequence repre-

sents the degrees of all downstream nodes. D(g̃(v)) is clearly a subsequence of
D(g). Finally, let E(g̃(v)) denote the set of edges in the subtree g̃(v).

For this subtree, we define its s-value as

s(g̃(v,u)) = dvdu +
∑

(j,k)∈E(g̃(v))

djdk. (4.2)



468 Internet Mathematics

This definition provides a natural decomposition for the s-metric, in that for any
vertex v ∈ V, we can write

s(g) =
∑

k∈N (v)

s
(
g̃(k,v)

)
.

Furthermore, the s-value for any subtree can be defined as a recursive relationship
on its downstream subtrees, specifically

s
(
g̃(v,u)

)
= dvdu +

∑
k∈N (v)\u

s
(
g̃(k,v)

)
.

Proposition 4.2. Let g be the smax acyclic graph corresponding to degree sequence D.
Then, for two vertices u, v ∈ V with du > dv, it necessarily follows that

(a) vertex v cannot be upstream from vertex u;

(b) the number of vertices in g̃(v) cannot be greater than the number of vertices
in g̃(u) (i.e., |D(g̃(u))| ≥ |D(g̃(v))|);

(c) the degree sequence of g̃(u) dominates that of g̃(v) (i.e., d
(u)
1 ≥ d

(v)
1 , d

(u)
2 ≥

d
(v)
2 , . . . ); and

(d) s(g̃(u)) > s(g̃(v)).

Although we do not prove each of these statements formally, each of parts (a)–
(d) is true by simple contradiction. Essentially, if any of these statements is
false, there is a rewiring operation that can be performed on the graph g that
increases its s-value, thereby violating the assumption that g is the smax graph.
See Appendix A for additional information.

Proposition 4.3. Let g be the smax acyclic graph corresponding to degree sequence D.
Then it necessarily follows that for each v ∈ V and any k 	= v ∈ V, the subgraph
g̃(v) maximizes s(g(v,k)) for the degree sequence D(g̃(v)).

The proof of Proposition 4.3 follows from an inductive argument that starts with
the leaves of the tree and works its way upstream. Essentially, in order for a
tree to be the smax acyclic graph, each of its branches must be the smax subtree
on the corresponding degree subsequence, and this must hold at all levels of the
hierarchy.
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Figure 7. Left: The centrality of nodes as defined by total traffic throughput.
The most central nodes in HOTnet are the low-degree core routers while the
most central node in HSFnet is the highest-degree hub. The HOTnet through-
puts are close to the router bandwidth constraints. Right: The betweenness
centrality versus node degree for non-degree-one nodes from both the HSFnet
and HOTnet graphs in Figure 5. In HSFnet, node centrality increases with node
degree, and the highest-degree nodes are the most central. In contrast, many of
the most central nodes in HOTnet have low degree, and the highest-degree nodes
are significantly less central than in HSFnet.

4.2. The s-Metric and Node Centrality

While considerable attention has been devoted to network node degree sequences
in order to measure the structure of complex networks, it is clear that such
sequences alone are insufficient to characterize the aggregate structure of a graph.
Figure 5 has shown that high-degree nodes can exist at the periphery of the
network or at its core, with serious consequences for issues such as network
performance and robustness in the presence of node loss. At the same time, it
is clear from the smax construction procedure that graphs with the largest s(g)
values will have their highest-degree nodes located in the network core. Thus,
an important question relates to the centrality of individual high-degree nodes
within the larger network and how this relates, if at all, to the s-metric for graph
structure. Again, the answer to this question helps to quantify the role that
individual hub nodes play in the overall structure of a network.

There are several possible means for measuring node centrality, and in the
context of the Internet, one such measure is the total throughput (or utilization)
of a node when the network supports its maximum flow as defined in (3.1).
The idea is that under a gravity model in which traffic demand occurs between
all node pairs, nodes that are highly utilized are central to the overall ability
of the network to carry traffic. Figure 7 shows the utilization of individual
nodes within HSFnet and HOTnet, when each network supports its respective
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maximum flow, along with the corresponding degree for each node. The picture
for HOTnet illustrates that the most central nodes are in fact low-degree nodes,
which correspond to the core routers in Figure 5(c). In contrast, the node with
highest utilization in HSFnet is the highest-degree node, corresponding to the
central hub in Figure 5(a).

Another, more graph theoretic, measure of node centrality is its so-called be-
tweenness (also known as betweenness centrality), which is most often calculated
as the fraction of shortest paths between node pairs that pass through the node
of interest [Dorogovtsev and Mendes 03]. Define σst to be the number of shortest
paths between two nodes s and t. Then, the betweenness centrality of any vertex
v can be computed as

Cb(v) =
∑

s<t∈V σst(v)∑
s<t∈V σst

,

where σst(v) is the number of paths between s and t that pass through node
v. In this manner, betweenness centrality provides a measure of the traffic load
that a node must handle. An alternate interpretation is that it measures the
influence that an individual node has in the spread of information within the
network.

Newman [Newman 05a] introduces a more general measure of betweenness
centrality that includes the flow along all paths (not just the shortest ones) and,
based on an approach using random walks, demonstrates how this quantity can
be computed by matrix methods. Applying this alternate metric from [Newman
05a] to the simple annotated graphs in Figure 5, we observe in Figure 7 that
the high-degree nodes in HSFnet are the most central: in fact, this measure
of betweenness centrality increases with node degree. In contrast, most of the
nodes in HOTnet that are central are not high-degree nodes but the low-degree
core routers.

Understanding the betweenness centrality of individual nodes is considerably
simpler in the context of trees. Recall that in an acyclic graph there is ex-
actly one path between any two vertices, making the calculation of Cb(v) rather
straightforward. Specifically, observe that

∑
s<t∈V σst = n(n − 1)/2 and that,

for each s 	= v 	= t ∈ V, σst(v) ∈ {0, 1}. This recognition facilitates the following
more general statement regarding the centrality of high-degree nodes in the smax

acyclic graph.

Proposition 4.4. Let g be the smax acyclic graph for degree sequence D, and consider
two nodes u, v ∈ V satisfying du > dv. Then, it necessarily follows that Cb(u) >

Cb(v).
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The proof of Proposition 4.4 can be found in Appendix A, along with the proof of
the smax construction. Thus, the highest-degree nodes in the smax acyclic graph
are the most central. More generally, for graphs that are not trees, we believe
that there is a direct relationship between high-degree hub nodes in large-s(g)
graphs and a central role in overall network connectivity, but this has not been
formally proven.

4.3. The s-Metric and Self-Similarity

When viewing graphs as multiscale objects, natural transformations that yield
simplified graphs are pruning of nodes at the graph periphery and/or collapsing
of nodes, although these are only the simplest of many possible coarse-graining
operations that can be performed on graphs. These transformations are of par-
ticular interest because they are often inherent in measurement processes that
are aimed at detecting the connectivity structure of actual networks. We will
use these transformations to motivate the observation that there is a plausible
relationship between high-s(g) graphs and self-similarity, as defined by these
simple operations. We then consider the transformation of a random pairwise
degree-preserving (link) rewiring that suggests a more formal definition of the
notion of a self-similar graph.

4.3.1. Graph trimming by link removal. Here, we consider the properties of smax graphs
under the operation of graph trimming, in which links are removed from the
graph one at a time. Recall that, by construction, the links in the smax graph
are selected from a list of potential links (denoted as (i, j) for i, j ∈ V) that
are ordered according to their weights didj . Denote the (ordered) list of links
in the smax graph as E = {(i1, j1), (i2, j2), . . . , (il, jl)}, and consider a procedure
that removes links in reverse order, starting with (il, jl). Define g̃k to be the
remaining graph after the removal of all but the first k − 1 links, (i.e., after
removing (il, jl), (il−1, jl−1), . . . , (ik+1, lk+1), (ik, lk)). The remaining graph will
have a partial degree sequence D̃k = {d′

1, d
′
2, . . . , d

′
k}, where d

′
m ≤ dm,m =

1, 2, . . . k, but the original ordering is preserved, i.e., d
′
1 ≥ d

′
2 ≥ · · · ≥ d

′
k. This

last statement holds because when removing links starting with the smallest didj ,
nodes will “lose” links in reverse order according to their node degree.

Observe for trees that removing a link is equivalent to removing a node (or
subtree), so we could have equivalently defined this process in terms of “node
pruning.” As a result, for acyclic smax graphs, it is easy to see the following.

Proposition 4.5. Let g be an acyclic smax graph satisfying ordered degree sequence
D = {d1, d2, . . . , dn}. For 1 ≤ k ≤ n, denote by g̃k the acyclic graph obtained by
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removing (trimming) in order nodes n, n − 1, . . . , k + 1 from g. Then, g̃k is the
smax graph for degree sequence D̃k = {d′

1, d
′
2, . . . , d

′
k}.

The proof of Proposition 4.5 follows directly from our proof of the construction of
the smax graph for trees (see Appendix A). More generally, for graphs exhibiting
large s(g)-values, properly defined graph operations of link-trimming appear to
yield simplified graphs with high s-values, thus suggesting a broader notion of
self-similarity or invariance under such operations. However, additional work
remains to formalize this notion.

4.3.2. Coarse-graining by collapsing nodes. A kind of coarse-graining of a graph can be
obtained for producing simpler graphs by collapsing existing nodes into aggre-
gate or super nodes and removing any duplicate links emanating from the new
nodes. Consider the case of a tree g having degree sequence D = {d1, d2, . . . , dn}
satisfying d1 ≥ d2 ≥ · · · ≥ dn and connected in a manner such that s(g) = smax.
Then, as long as node aggregation proceeds in order with the degree sequence
(i.e., aggregate nodes 1 and 2 into 1′, then aggregate nodes 1′ and 3 into 1′′, and
so on), all intermediate graphs g̃ will also have s(g̃) = smax. To see this, observe
that for trees, when aggregating nodes 1 and 2, we have an abbreviated degree
sequence D′ = {d′

1, d3, . . . , dn}, where d
′
1 = d1 + d2 − 2. Provided that d2 ≥ 2,

we are guaranteed to have d
′
1 ≥ d3, and the overall ordering of D′ is preserved.

Similarly, when aggregating nodes 1
′
and 3, we have abbreviated degree sequence

D
′′

= {d′′
1 , d4, . . . , dn}, where d

′′
1 = d1 + d2 + d3 − 4. So, as long as d3 ≥ 2, then

d
′′
1 ≥ d4 and ordering of D

′′
is preserved. In general, as long as each new node is

aggregated in order and satisfies di ≥ 2, then we are guaranteed to maintain an
ordered degree sequence. As a result, we have proved the following proposition.

Proposition 4.6. For acyclic g ∈ G(D) with s(g) = smax, coarse-graining according
to the above procedure yields smaller graphs g′ ∈ G(D′) that are also the smax

graphs of this truncated degree distribution.

For cyclic graphs, this type of node aggregation operation maintains smax

properties only if the resulting degree sequence remains ordered: i.e., d1′ ≥ d3 ≥
d4 after the first coarse-graining operation, d1′′ ≥ d4 ≥ d5 after the second coarse-
graining operation, etc. It is relatively easy to generate cases where arbitrary
node aggregation violates this condition and the resulting graph is no longer self-
similar in the sense of having a large s(g)-value. However, when this condition
is satisfied, the resulting simpler graphs seem to satisfy a broader self-similar
property. Specifically, for high-s(g) graphs g ∈ G(D), properly defined graph
operations of coarse-graining appear to yield simplified graphs in G(D) with
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high s-values (i.e., such graphs are self-similar or invariant under proper coarse-
graining), but this has not been proved.

These are, of course, not the only coarse-graining, pruning, or merging pro-
cesses that might be of interest, and for which smax graphs are preserved, but
they are perhaps the simplest to state and prove.

4.4. Self-Similar and Self-Dissimilar

While graph transformations such as link trimming or node collapse reflect some
aspects of what it means for a graph to be self-similar, the graph transformation
of random pairwise degree-preserving link rewiring offers additional notions of
self-similarity that potentially are even richer and also connected with the claim
in the SF literature that SF graphs are preserved under such rewirings.

4.4.1. Subgraph-based motifs. For any graph g ∈ G(D), consider the set of local
degree-preserving rewirings of distinct pairs of links. There are

(
l
2

)
= l(l − 1)/2

pairs of different links on which degree-preserving rewiring can occur. Each pair
of links defines its own network subgraph, and in the case where g is an acyclic
graph (i.e., a tree), these form three distinct types of subgraphs, as shown in
Figure 8(top). Using the notation d2 =

∑
dk

2 and s = s(g), we can enumerate
the number of these subgraphs as follows:

(i) The two links share a common node. There are
∑n

i=1

(
di

2

)
= 1

2d2−l possible
ways that this can occur.

(ii) The links have two nodes that are connected by a third link. There are∑
(i,j)∈E(di − 1)(dj − 1) = s − d2 + l possible ways that this can occur.

(iii) The links have end points that do not share any direct connections. There
are

(
l
2

)−∑n
i=1

(
di

2

)−∑
(i,j)∈E(di −1)(dj −1) = 1

2d2 −s+ 1
2 (l2 −2) possible

ways that this can occur.

Collectively, these three basic subgraphs account for all possible
(

l
2

)
= l(l− 1)/2

pairs of different links. The subgraphs in cases (i) and (ii) are themselves trees,
while the subgraph in case (iii) is not. We will refer to these three cases for
subgraphs as motifs, in the spirit of [Milo et al. 02], noting that our notion of
subgraph-based motifs is motivated by the operation of random rewiring to be
discussed in the next section.

The simplest and most striking feature of the relationship between motifs
and s(g) for acyclic graphs is that we can derive formulas for the number of
subgraph-based (local) motifs (and the outcomes of rewiring) entirely in terms
of d2, s = s(g), and l. Thus, for example, we can see that graphs having higher
d2 (equivalently higher CV ) values have fewer of the second motif. If we fix D,
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Figure 8. (top) Three possible subgraph-based motifs in degree-preserving
rewiring in acyclic graphs. Dotted links represents links to be rewired. Rewiring
operations that result in nonsimple graphs (shaded) are assumed to revert to the
original configuration. Thus defined, rewiring of motif (i) does not result in any
new graphs, rewiring of motif (ii) results in one possible new graph, and rewiring
of motif (iii) results in two possible new graphs. (bottom) The numbers of the
three motifs and successively the number for each possible rewiring outcome. We
distinguish between equal, not equal but connected and simple, not connected
but simple, and not simple graphs that are similar to each graph with the given
motif selected for rewiring. The total number of cases (column sum) is (l2 − l)/2,
while the total number (row sum) of outcomes is twice that at l2− l. Here, we use
the abbreviated notation d2 =

�
k dk

2 and s = s(g), with l equal to the number
of links in the graph.
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and thus l and d2, for all graphs of interest, then the only remaining dependence
is on s, and graphs with higher s(g)-values contain fewer disconnected (case
(iii)) motifs. This can be interpreted as a motif-level connection between s(g)
and self-similarity, in that graphs with higher s(g) contain more motifs that
are themselves trees and thus more similar to the graph as a whole. Graphs
having lower s(g) have more motifs of type (iii) that are disconnected and thus
dissimilar to the graph as a whole. Thus, high-s(g) graphs have this motif self-
similarity, low-s(g) graphs have motif self-dissimilarity, and we can precisely
define a measure of this kind of self-similarity and self-dissimilarity as follows.

Definition 4.7. For a graph g ∈ G(D), another measure of the extent to which g is
self-similar is the metric ss(g) defined as the number of motifs (cases (i)–(ii)) that
are themselves connected graphs. Accordingly, the measure of self-dissimilarity
sd(g) is then the number of motifs (case (iii)) that are disconnected.

For trees, ss(g) = s−d2/2 and sd(g) = −s+(l2 − l+d2)/2, so this local motif
self-similarity (self-dissimilarity) is essentially equivalent to high-s(g) (respec-
tively, low-s(g)). As noted previously, network motifs have already been used as
a way to study self-similarity and coarse-graining [Itzkovitz et al. 05, ?]. There,
one defines a recursive procedure by which node-connectivity patterns become
represented as a single node (i.e., a different kind of motif), and it was shown
that many important technological and biological networks were self-dissimilar,
in the sense that coarse-grained counterparts display very different motifs at
each level of abstraction. Our notion of motif self-similarity is much simpler, but
consistent, in that the Internet has extremely low s(g) and thus minimally self-
similar at the motif level. The next question is whether high s(g) is connected
with “self-similar” in the sense of being preserved under rewiring.

4.4.2. Degree-preserving rewiring. We can also connect s(g) in several ways with the
effect that local rewiring has on the global structure of graphs in the set G(D).
Recall the process from Section 4.4.1 by which two network links are selected at
random for degree-preserving rewiring, and note that when applied to a graph
g ∈ G(D), there are four possible distinguishable outcomes:

1. g′ = g with g′ ∈ G(D): the new graph g′ is equal to the original graph g

(and therefore is also a simple, connected graph in G(D));

2. g′ 	= g with g′ ∈ G(D): the new graph g′ is not equal to g, but is still
a simple, connected graph in the set G(D) (note that this can include g′

which are isomorphic to g);
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3. g′ 	= g with g′ 	∈ G(D): the new graph g′ is still simple, but is not con-
nected;

4. g′ 	= g with g′ 	∈ G(D): the new graph g′ is no longer simple (i.e., it either
contains self-loops or parallel links).

There are two possible outcomes from the rewiring of any particular pair of
links, as shown in Figure 8(top) and this yields a total of 2

(
l
2

)
= l(l− 1) possible

outcomes of the rewiring process. In our discussion here, we ignore isomorphisms
and assume that all nonequal graphs are different.

We are ultimately interested in retaining within our new definitions the notion
that high s(g) graphs are somehow preserved under rewiring provided that this
is sufficiently random and degrees are preserved. Scaling is of course trivially
preserved by any degree-preserving rewiring, but high s(g) value is not. Again,
Figure 5 provides a clear example, since successive rewirings can take any of
these graphs to any other. More interesting for high s(g) graphs is the effect
of random rewiring. Consider again the Perf(g) vs. s(g) plane from Figure 6.
In addition to the four networks from Figure 5, we show the Perf(g) and s(g)
values for other graphs in G(D) obtained by degree-preserving rewiring from
the initial four networks. This is done by selecting uniformly and randomly
from the l(l − 1) different rewirings of the l(l − 1)/2 different pairs of links and
restricting rewiring outcomes to elements of G(D) by resetting all disconnected
or nonsimple neighbors to equal. Points that match the shape of one of the four
networks are only one rewiring operation away, while points represented in gray
are more than one rewiring operation away.

The connections of the results in Figure 8(bottom) to motif counts is more
transparent, however, than the consequences of successive rewiring. Neverthe-
less, we can use the results in Figure 8(bottom) to describe related ways in which
low s(g) graphs are “destroyed” by random rewiring. For any graph g, we can
enumerate among all possible pairs of links on which degree-preserving rewiring
can take place and count all those that result in equal or nonequal graphs. In Fig-
ure 8, we consider the four cases for degree-preserving rewiring of acyclic graphs,
and we count the number of ways each can occur. For motifs (i) and (ii), it is
possible to check locally for outcomes that produce nonsimple graphs, and these
cases correspond to the shaded outcomes in Figure 8(top). If we a priori exclude
all such nonsimple rewirings, then there remain a total of l(l − 1) − s + d2/2
simple similar neighbors of a tree. We can define a measure of local rewiring
self-dissimilarity for trees as follows.

Definition 4.8. For a tree g ∈ G(D), we measure the extent to which g is self-
dissimilar under local rewiring by the metric rsd(g) defined as the number of
simple similar neighbors that are disconnected graphs.
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For trees, rsd(g) = sd(g) = −s + (l2 − l + d2)/2, so this local rewiring self-
dissimilarity is identical to motif self-dissimilarity and directly related to low
s(g) values. This is because only motif (iii) results in simple but not connected
similar neighbors.

4.5. A Coherent Nonstochastic Picture

Here, we pause to reconsider the features/claims for SF graphs in the existing
literature (see Section 3.1) in light of our structural approach to graphs with
scaling degree sequence D. In doing so, we make a simple observation: high-s(g)
graphs exhibit most of the features highlighted in the SF literature, but low-s(g)
graphs do not, and this provides insight into the diversity of graphs in the space
G(D). Perhaps more importantly, given a graph with scaling degree D, the s(g)
metric provides a litmus test as to whether or not the existing SF literature
might be relevant to the network under study.

By definition, all graphs in G(D) exhibit power laws in their node degrees
provided that D is scaling. However, preferential attachment mechanisms typ-
ically yield only high-s(g) graphs—indeed, the smax construction uses what is
essentially the “most preferential” type of attachment mechanism. Furthermore,
while all graphs having scaling degree sequence D have high-degree nodes or
hubs, only for high-s(g) graphs do such hubs tend to be critical for overall con-
nectivity. While it is certainly possible to construct a graph with low s(g) and
having a central hub, this need not be the case, and our work to date suggests
that most low-s(g) graphs do not have the type of central hubs that create
an “Achilles’ heel.” Additionally, we have illustrated that high-s(g) graphs ex-
hibit striking self-similarity properties, including that they are largely preserved
under appropriately defined graph transformations of trimming, coarse-graining
and random pairwise degree-preserving rewiring. In the case of random rewiring,
we offered numerical evidence and heuristic arguments in support of the conjec-
ture that, in general, high-s(g) graphs are the likely outcome of performing such
rewiring operations, whereas low-s(g) graphs are unlikely to occur as a result of
this process.

Collectively, these results suggest that a definition of “scale-free” graphs that
restricts graphs to having both scaling degree D and high-s(g) results in a co-
herent story. It recovers all of the structural results in the SF literature and
provides a possible explanation as to why some graphs that exhibit power laws
in their node degrees do not seem to satisfy other properties highlighted in the
SF literature. This nonstochastic picture represents what is arguably a rea-
sonable place to stop with a theory for “scale-free” graphs. However, from a
graph-theoretic perspective, there is considerably more work that could be done.
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For example, it may also be possible to expand the discussion of Section 4.4 to
account more comprehensively for the way in which local motifs are transformed
into one another and to relate our attempts more directly to the approach con-
sidered in [Milo et al. 02]. Elaborating on the precise relationships and providing
a possible interpretation of motifs as capturing a kind of local as well as global
self-similarity property of an underlying graph remain open interesting problems.
Additionally, we have also seen that the use of degree-preserving rewiring among
connected graphs provides one view into the space G(D). However, the geometry
of this space is still complicated, and additional work is required to understand
its remaining features. For example, our work to date suggests that for scaling
D it is impossible to construct a graph that has both high Perf(g) and high
s(g), but this has not been proven. In addition, it will be useful to understand
the way that degree-preserving rewiring causes one to “move” within the space
G(D) (see, for example, [Gkantsidis et al. 03, Farkas et al. 04]).

It is important to emphasize that the purpose of the s(g) metric is to provide
insight into the structure of “scale-free” graphs and not as a general metric
for distinguishing among all possible graphs. Indeed, since the metric fails to
distinguish among graphs having low s(g), it provides little insight other than to
say that there is tremendous diversity among such graphs. However, if a graph
has high s(g), then we believe that there exist strong properties that can be
used to understand the structure (and possibly, the behavior) of such systems.
In summary, if one wants to understand “scale-free” graphs, then we argue that
s(g) is an important metric and highly informative. However, for graphs with
low s(g), this metric conveys limited information.

Despite the many appealing features of a theory that considers only non-
stochastic properties, most of the SF literature has considered a framework that
is inherently stochastic. Thus, we proceed next with a stochastic version of the
story, one that connects more directly with the existing literature and common
perspective on SF graphs.

5. A Probabilistic Approach

While the introduction and exploration of the s-metric fits naturally within stan-
dard studies of graph-theoretic properties, it differs from the SF literature in that
our structural approach does not depend on a probability model underlying the
set of graphs of interest. The purpose of this section is to compare our approach
with the more conventional probabilistic and ensemble-based views. For many
application domains, including the Internet, there seems to be little motivation
to assume that networks are samples from an ensemble, and our treatment here
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will be brief while trying to cover this broad subject. Here again, we show that
the s(g) metric is potentially interesting and useful, as it has a direct relationship
to notions of graph likelihood, graph degree correlation, and graph assortativity.
This section also highlights the striking differences in the way that randomness
is treated in physics-inspired approaches versus those shaped by mathematics
and engineering.

The starting point for most probabilistic approaches to the study of graphs is
through the definition of an appropriate statistical ensemble (see, for example,
[Dorogovtsev and Mendes 03, Section 4.1]).

Definition 5.1. A statistical ensemble of graphs is defined by

(i) a set G of graphs g and

(ii) a rule that associates a real number (probability) 0 ≤ P (g) ≤ 1 with each
graph g ∈ G such that

∑
g∈G P (g) = 1.

To describe an ensemble of graphs, one can either assign a specific weight to
each graph or define some process (i.e., a stochastic generator) that results in a
weight. For example, in one basic model of random graphs, the set G consists
of all graphs with vertex set V = {1, 2, . . . , n} having l edges, and each element
in G is assigned the same probability 1/

(
n
l

)
. In an alternative random graph

model, the set G consists of all graphs with vertex set V = {1, 2, . . . , n} in which
the edges are chosen independently and with probability 0 < p < 1. In this
case, the probability P (g) depends on the number of edges in g and is given by
P (g) = pl(1 − p)n−l, where l denotes the number of edges in g ∈ G.

The use of stochastic construction procedures to assign statistical weights has
so dominated the study of graphs that the assumption of an underlying probabil-
ity model often becomes implicit. For example, consider the four graph construc-
tion procedures listed in [Dorogovtsev and Mendes 03, p.22] that are claimed to
form “the basis of network science,” and include (1) classical random graphs due
to Erdös and Renýı [Erdös and Renyi 59]; (2) equilibrium random graphs with a
given degree distribution such as the Generalized Random Graph (GRG) method
[Chung and Lu 03]; (3) “small-world networks” due to Watts and Strogatz [Watts
and Strogatz 98]; and (4) networks growing under the mechanism of preferential
linking due to Barabási and Albert [Barabási and Albert 99] and made precise in
[Bollobas and Riordan 03]. All of these construction mechanisms are inherently
stochastic and provide a natural means for assigning, at least in principle, prob-
abilities to each element in the corresponding space of realizable graphs. While
deterministic (i.e., nonstochastic) construction procedures have been considered
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[Barabási et al. 01], their study has been restricted to the treatment of deter-
ministic preferential attachment mechanisms that result in pseudofractal graph
structures. Graphs resulting from other types of deterministic constructions are
generally ignored in the context of statistical physics-inspired approaches since,
within the space of all feasible graphs, their likelihood of occurring is typically
viewed as vanishingly small.

5.1. A Likelihood Interpretation of s(g)

Using the construction procedure associated with the general model of random
graphs with a given expected degree sequence considered in [Chung and Lu 03]
(also called the Generalized Random Graph (GRG) model for short), we show
that the s(g) metric allows for a more familiar ensemble-related interpretation
as (relative) likelihood with which the graph g is constructed according to the
GRG method. To this end, the GRG model is concerned with generating graphs
with given expected degree sequence D = {d1, . . . dn} for vertices 1, . . . , n. The
link between vertices i and j is chosen independently with probability pij , with
pij proportional to the product didj (i.e., pij = ρdidj , where ρ is a sufficiently
small constant), and this defines a probability measure P on the space of all
simple graphs and thus induces a probability measure on G(D) by conditioning
on having degree D. The construction is fairly general and can recover the
classic Erdös-Rényi random graphs [Erdös and Renyi 59] by taking the expected
degree sequence to be {pn, pn, . . . , pn} for constant p. As a result of choosing
each link (i, j) ∈ E with a probability that is proportional to didj in the GRG
model, different graphs are typically assigned different probabilities under P .
This generation method is closely related to the Power Law Random Graph
(PLRG) method [Aiello et al. 00], which also attempts to replicate a given
(power law) degree sequence. The PLRG method involves forming a set L of
nodes containing as many distinct copies of a given vertex as the degree of
that vertex, choosing a random matching of the elements of L, and applying a
mapping of a given matching into an appropriate (multi)graph. It is believed that
the PLRG and GRG models are “basically asymptotically equivalent, subject to
bounding error estimates” [Aiello et al. 00]. Defining the likelihood of a graph
g ∈ G(D) as the logarithm of its probability under the measure P , we can show
that the log likelihood (LLH) of a graph g ∈ G(D), can be computed as

LLH(g) ≈ κ + ρ s(g), (5.1)

where κ is a constant.
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Note that the probability of any graph g under P is given by [Park and New-
man 03]

P (g) =
∏

(i,j)∈E
pij

∏
(i,j)/∈E

(1 − pij),

and using the fact that under the GRG model we have pij = ρdidj , where
D = (d1, . . . dn) is the given degree sequence, we get

P (g) = ρl
∏
i∈V

ddi
i

∏
(i,j)/∈E

(1 − ρdidj)

= ρl
∏
i∈V

ddi
i

∏
i,j∈V(1 − ρdidj)∏

(i,j)∈E(1 − ρdidj)
.

Taking the log, we obtain

log P (g) = l log ρ +
∑
i∈V

di log di +
∑

i,j∈V
log(1 − ρdidj)

−
∑

(i,j)∈E
log(1 − ρdidj).

Defining
κ = l log ρ +

∑
i∈V

di log di +
∑

i,j∈V
log(1 − ρdidj),

we observe that κ is constant for fixed degree sequence D. Also recall that
log(1+a) ≈ a for |a| 
 1. Thus, if ρ is sufficiently small so that pij = ρdidj 
 1,
we get

LLH(g) = log P (g) ≈ κ +
∑

(i,j)∈E
ρdidj .

This shows that the graph likelihood LLH(g) can be made proportional to s(g),
and thus we can interpret s(g)/smax as the relative likelihood of g ∈ G(D),
for the smax graph has the highest likelihood of all graphs in G(D). Choosing
ρ = 1/

∑
i∈V di = 1/2l in the GRG formulation results in the expectation

E(di) =
n∑

j=1

pij =
n∑

j=1

ρdidj = ρdi

n∑
j=1

dj = di.

However, this ρ may not have pij = ρdidj 
 1 and can even make pij > 1,
particularly in cases when the degree sequence is scaling. Thus, ρ must often
be chosen much smaller than ρ = 1/

∑
i∈V di = 1/2l to ensure that pij 
 1 for

all nodes i, j. In this case, the “typical” graph resulting from this construction
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will have degree sequence much less than D; however, this sequence will be
proportional to the desired degree sequence, E(di) ∝ di.

While this GRG construction yields a probability distribution on G(D) by
conditioning on having degree sequence D, this is not an efficient, practical
method to generate members of G(D), particularly when D is scaling and it is
necessary to choose ρ 
 1/2l. The appeal of the GRG method is that it is easy to
analyze and yields probabilities on G(D) with clear interpretations. All elements
of G(D) will have nonzero probability with log likelihood proportional to s(g).
But, even the smax graph may be extremely unlikely, and thus a naive Monte
Carlo scheme using this construction would rarely yield any elements in G(D).
There are many conjectures in the SF literature that suggest that a wide variety
of methods, including random degree-preserving rewiring, produce “essentially
the same” ensembles. Thus, it may be possible to generate probabilities on G(D)
that can both be analyzed theoretically and also provide a practical scheme to
generate samples from the resulting ensemble. While we believe this is plausible,
it’s rigorous resolution is well beyond the scope of this paper.

5.2. Highly Likely Constructions

The interpretation of s(g) as (relative) graph likelihood provides an explicit
connection between this structural metric and the extensive literature on random
graph models. Since the GRG method is a general means of generating random
graphs, we can in principle generate random instances of “scale-free” graphs
with a prescribed power law degree sequence by using GRG as described in the
previous section and then conditioning on that degree sequence. (More efficient,
practical schemes may also be possible.) In the resulting probability distribution
on the space of graphs G(D), high-s(g) graphs with hub-like core structure are
literally highly likely to arise at random, while low-s(g) graphs with their high-
degree nodes residing at the graphs’ peripheries are highly unlikely to result from
such stochastic construction procedures.

While graphs resulting from stochastic preferential attachment construction
may have a different underlying probability model than GRG-generated graphs,
both result in simple graphs having approximate scaling relationships in their
degree distributions. One can understand the manner in which high-s(g) graphs
are highly likely through the use of a simple Monte Carlo simulation experi-
ment. Recall that the toy graphs in Figure 5 each contained 1,000 nodes and
that the graph in Figure 5(b) was “random” in the sense that it was obtained by
successive arbitrary rewirings of HSFnet in Figure 5(a). An alternate approach
to generating random graphs having a power law in their distribution of node
degree is to use the type of preferential attachment mechanism first outlined
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Figure 9. Results from Monte Carlo generation of preferential attachment graphs
having 1,000 nodes. For each trial, we compute the value s(g) and then
renormalize to S(g) against the smax graph having the same degree sequence.
Both the CDF and CCDF are shown. In comparison, the HOTnet graph has
S(HOTnet) = 0.3862 and S(HSFnet) = 0.9568.

in [Barabási and Albert 99] and consider the structural features that are most
likely among a large number of trials. Here, we generate 100,000 graphs each
having 1,000 nodes and measure the s-value of each. It is important to note that
successive graphs resulting from preferential attachment will have different node
degree sequences (one that is undoubtedly different from the degree sequence in
Figure 5(e)), so a raw comparison of s(g) is not appropriate. Instead, we intro-
duce the normalized value S(g) = s(g)/smax and use it to compare the structure
of these graphs. Note that this means also generating the smax graph associated
with the particular degree sequence for the graph resulting from each trial. For-
tunately, the construction procedure in Appendix A makes this straightforward,
and so in this manner we obtain the normalized S-values for 100,000 graphs re-
sulting from the same preferential attachment procedure. Plotting the CDF and
CCDF (see Section 2.1) of the S-values for these graphs in Figure 9, we observe
a striking picture: all of the graphs resulting from preferential attachment had
values of S greater than 0.5, most of the graphs had values 0.6 < S(g) < 0.9, and
a significant number had values S(g) > 0.9. In contrast, the graphs in Figure 5
had values: S(HSFnet) = 0.9568, S(Random) = 0.7792, S(HOTnet) = 0.3862,
and S(PoorDesign) = 0.4390. Again, from the perspective of stochastic con-
struction processes, low-S values typical of HOT constructions are very unlikely
while high-S values are much more likely to occur at random.

With this additional insight into the s-values associated with different graphs,
the relationship in the Perf(g) vs. s(g) plot of Figure 6 is clearer. Specifically,
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high-performance networks resulting from a careful design process are vanish-
ingly rare from a conventional probabilistic graph point of view. In contrast,
the likely outcome of random graph constructions (even carefully handcrafted
ones) are networks that have extremely poor performance or lack the desired
functionality (e.g., providing connectivity) altogether.

5.3. Degree Correlations

Given an appropriate statistical ensemble of graphs, the expectation of a random
variable or random vector X is defined as

〈X〉 =
∑
g∈G

X(g)P (g). (5.2)

For example, for 1 ≤ i ≤ n, let Di be the random variable denoting the degree of
node i for a graph g ∈ G, and let D = {D1,D2, . . . , Dn} be the random vector
representing the node degrees of g. Then, the degree distribution is given by

P (k) ≡ P ({g ∈ G : Di(g) = k; i = 1, 2, . . . , n})

and can be written in terms of an expectation of a random variable, namely

P (k) =
1
n

〈
n∑

i=1

δ[Di − k]

〉
,

where

δ[Di(g) − k] =
{

1 if node i of graph g has degree k
0 otherwise.

One previously studied topic has been the correlations between the degrees
of connected nodes. To show that this notion has a direct relationship to the
s(g) metric, we follow [Dorogovtsev and Mendes 03, Section 4.6] and define the
degree correlation between two adjacent vertices having respective degree k and
k′ as follows.

Definition 5.2. The degree correlation between two neighbors having degrees k and
k′ is defined by

P (k, k′) =
1
n2

〈
n∑

i,j=1

δ[di − k]aijδ[dj − k′]

〉
, (5.3)

where the aij are elements of the network node adjacency matrix such that

aij =
{

1 if nodes i, j are connected
0 otherwise

and where the random variables δ[Di − k] are as above.
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As an expectation of indicator-type random variables, P (k, k′) can be interpreted
as the probability that a randomly chosen link connects nodes of degrees k and k′,
therefore P (k, k′) is also called the degree-degree distribution for links. Observe
that for a given graph g having degree sequence D,

s(g) =
∑

(i,j)∈E
didj

=
∑

(i,j)∈E

∑
k∈D

kδ[di − k]
∑

k′∈D

δ[dj − k′]k′

=
∑

(i,j)∈E

∑
k∈D

∑
k′∈D

kδ[di − k]δ[dj − k′]k′

=
1
2

∑
k,k′∈D

kk′
n∑

i,j=1

δ[di − k]aijδ[dj − k′].

Thus, there is an inherent relationship between the structural metric s(g) and
the degree-degree distribution, which we formalize as follows.

Proposition 5.3. 〈s〉 =
n2

2

∑
k,k′

kk′P (k, k′). (5.4)

Proof. For fixed degree sequence D,

〈s〉 =

〈
1
2

∑
k,k′∈D

kk′
n∑

i,j=1

δ[di − k]aijδ[dj − k′]

〉

=
1
2

∑
k,k′∈D

kk′
〈

n∑
i,j=1

δ[di − k]aijδ[dj − k′]

〉

=
n2

2

∑
k,k′∈D

kk′P (k, k′).

This result shows that for an ensemble of graphs having degree sequence D,
the expectation of s can be written purely in terms of the degree correlation.
While other types of correlations have been considered (e.g., the correlations
associated with clustering or loops in connectivity), degree correlations of the
above type are the most obviously connected with the s-metric.

5.4. Assortativity/Disassortativity of Networks

Another ensemble-based notion of graph degree correlation that has been studied
is the measure r(g) of assortativity in networks as introduced by Newman [New-
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man 02], who describes assortative mixing (r > 0) as “a preference for high-
degree vertices to attach to other high-degree vertices” and disassortative mixing
(r < 0) as the converse, where “high-degree vertices attach to low-degree ones.”
Since this is essentially what we have shown s(g) measures, the connection be-
tween s(g) and assortativity r(g) should be and ultimately is very direct. As
with all concepts in the SF literature, assortativity is developed in the context
of an ensemble of graphs, but Newman provides a sample estimate of assortativ-
ity of any given graph g. Using our notation, Newman’s formula [Newman 02,
Equation 4] can be written as

r(g) =

[∑
(i,j)∈E didj

]
− [∑

i∈V
1
2d2

i

]2
/l[∑

i∈V
1
2d3

i

] − [∑
i∈V

1
2d2

i

]2
/l

, (5.5)

where l is the number of links in the graph. Note that the first term of the
numerator of r(g) is precisely s(g) and that the other terms depend only on D

and not on the specific graph g ∈ G(D). Thus, r(g) is linearly related to s(g).
However, when we compute r(g) for the graphs in Figure 5, the values are all in
the interval [−0.4815,−0.4283]. Thus, all are roughly equally disassortative, and
r(g) seems not to distinguish between what we have viewed as extremely different
graphs. The assortativity interpretation appears to directly contradict both what
appears obvious from inspection of the graphs and the analysis based on s(g).
Recall that for S(g) = s(g)/smax the graphs in Figure 5 had S(HSFnet) =
0.9568 and S(HOTnet) = 0.3862, with high-degree nodes in HSFnet attached
to other high-degree nodes and in HOTnet attached to low-degree nodes.

The essential reason for this apparent conflict is that −1 ≤ r(g) ≤ 1 and
0 < S(g) ≤ 1 are normalized against a different background set of graphs. For
S(g) = s(g)/smax here, we have computed smax constrained to simple, connected
graphs, whereas r(g) involves no such constraints. The r = 0 graph with the
same degree sequence as HSFnet and HOTnet would be nonsimple—having, for
example, the highest-degree (d1) node highly connected to itself (with multiple
self-loops) and with multiple parallel connections to the other high-degree nodes
(e.g., multiple links to the d2 node). The corresponding r = 1 graph would be
both nonsimple and disconnected—having the highest-degree (d1) node essen-
tially connected only to itself. So HSFnet could be thought of as assortative
when compared with graphs in G(D), but dissassortative when compared with
all graphs. To emphasize this distinction, the description of assortative mixing
(r > 0) could be augmented to “high-degree vertices attach to other high-degree
vertices, including self-loops.” Since high variability, simple, connected graphs
will all typically have r(g) < 0, this measure is less useful than simply comparing
raw s(g) for this class of graphs. Thus, conceptually, r(g) and s(g) have the same
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aim, but with different and largely incomparable normalizations, both of which
are interesting.

We will now briefly sketch the technical details behind the normalization of
r(g). The first term of the denominator

∑
i∈V d3

i /2l is equal to smax for uncon-
strained graphs (i.e., those not restricted to be simple or even connected; see
Appendix A for details), and the normalization term in the denominator can be
understood accordingly as this smax. The term

(∑
i∈V d2

i /2
)2

/l can be inter-
preted as the center or zero-assortativity case, again for unconstrained graphs.
Thus, the perfectly assortative graph can be viewed as the smax graph (within a
particular background set G), and the assortativity of graphs is measured relative
to the smax graph, with appropriate centering.

Newman’s development of assortativity [Newman 02] is motivated by a defi-
nition that works both for an ensemble of graphs and as a sample-based metric
for individual graphs. Accordingly, his definition depends on Q(k, k′), the joint
distribution of the remaining degrees of the two vertices at either end of a ran-
domly selected link belonging to a graph in an ensemble. That is, consider a
physical process by which a graph is selected from a statistical ensemble and
then a link is arbitrarily chosen from that graph. The question of assortativ-
ity can then be understood in terms of some (properly normalized) statistical
average between the degrees of the nodes at either end of the link. For the
explicit connection between the ensemble-based and sample-based notions of as-
sortativity and our structural metric s(g), see the supplementary material at
http://www.internetmathematics.org/volumes/2/4/Lietal/suppmat.pdf.

6. SF Graphs and the Internet Revisited
Given the definitions of s(g), the various self-similarity and high likelihood fea-
tures of high-s(g) graphs, as well as the extreme diversity of the set of graphs
G(D) with scaling degree D, we look to incorporate this understanding into a
theory of SF graphs that recovers both the spirit and existing results, while mak-
ing rigorous the notion of what it means for a graph to be “scale-free.” To do
so, we first trace the exact nature of previous misconceptions concerning the SF
Internet, introduce an updated definition of a scale-free graph, clarify what state-
ments in the SF literature can be recovered, and briefly outline the prospects
for applying properly defined SF models in view of alternative theoretical frame-
works such as HOT (Highly Optimized/Organized Tolerance/Tradeoffs). In this
context, it is also important to understand the popular appeal that the SF ap-
proach has had. One reason is certainly its simplicity, and we will aim to preserve
that as much as possible as we aim to replace largely heuristic and experimental
results with ones more mathematical in nature. The other is that it relies heav-
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ily on methods from statistical physics, so much so that replacing them with
techniques that are shaped by mathematics and engineering will require a fun-
damental change in the way complex systems such as the Internet are viewed
and studied.

The logic of the existing SF theory and its central claims regarding the Internet
consists of the following steps:

1. the claim that measurements of the Internet’s router-level topology can be
reasonably modeled with a graph g that has scaling degree sequence D;

2. the assertion, or definition, that a graph g with scaling degree sequence D

is a scale-free graph;

3. the claim that scale-free graphs have a host of emergent features, most
notably the presence of several highly connected nodes (i.e., hubs) that are
critical to overall network connectivity and performance;

4. the conclusion that the Internet is therefore scale-free, and its hubs, through
which most traffic must pass, are responsible for the “robust yet fragile”
feature of failure tolerance and attack vulnerability.

In the following, we revisit the steps of this logic and illustrate that the conclusion
in Step 4 is based on a series of misconceptions and errors, ranging in scope from
taking highly ambiguous Internet measurements at face value to applying an
inherently inconsistent SF theory to an engineered system like the Internet.

6.1. Scaling Degree Sequences and the Internet

The Internet remains one of the most popular and highly cited application areas
where power laws in network connectivity have “emerged spontaneously,” and
the notion that this increasingly important information infrastructure exhibits a
signature of self-organizing complex systems has generated considerable motiva-
tion and enthusiasm for SF networks. However, as we will show here, this basic
observation is highly questionable and at worst is the simple result of errors em-
anating from the misinterpretation of available measurements and/or their naive
and inappropriate statistical analysis of the type critiqued in Section 2.1.2.

To appreciate the problems inherent in the available data, it is important to
realize that Internet-related connectivity measurements are notorious for their
ambiguities, inaccuracies, and incompleteness. This is due in part to the multi-
layered nature of the Internet protocol stack (where each level defines its own
connectivity), and it also results from the efforts of Internet Service Providers
(ISPs) who intentionally obscure their network structure in order to preserve
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what they believe is a source of competitive advantage. Consider as an example
the router-level connectivity of the Internet, which is intended to reflect (phys-
ical) one-hop distances between routers/switches. Although information about
this type of connectivity is typically inferred from traceroute experiments that
record successive IP-hops along paths between selected network host comput-
ers (see, for example, the Mercator [Govindan and Tangmunarunkit 00], Skitter
[CAIDA 05], and Rocketfuel [Spring et al. 04b] projects), there remain a number
of challenges when trying to reverse-engineer a network’s physical infrastructure
from traceroute-based measurements. The first challenge is that IP connectivity
is an abstraction (at Layer 3) that sits on top of physical connectivity (at Layer
2), so traceroute is unable to record directly the network’s physical structure,
and its measurements are highly ambiguous about the dependence between these
two layers. Such ambiguity in Internet connectivity persists even at higher layers
of the protocol stack, where connectivity becomes increasingly virtual, but for
different reasons (see, for example, Section 6.4 for a discussion of the Internet’s
AS and web graphs).

To illustrate how the somewhat subtle interactions among the different layers
of the Internet protocol stack can give the (false) appearance of high connectivity
at the IP-level, recall how at the physical layer the use of Ethernet technology
near the network periphery or Asynchronous Transfer Mode (ATM) technology in
the network core can give the appearance of high IP-connectivity since the phys-
ical topologies associated with these technologies may not be seen by IP-based
traceroute. In such cases, machines that are connected to the same Ethernet or
ATM network may have the illusion of direct connectivity from the perspective
of IP, even though they are separated by an entire network (potentially spanning
dozens of machines or hundreds of miles) at the physical level. In an entirely
different fashion, the use of “Layer 2.5 technologies” such as Multiprotocol Label
Switching (MPLS) tend to mask a network’s physical infrastructure and can give
the illusion of one-hop connectivity at Layer 3. Note that in both cases it is the
explicit and intended design of these technologies to hide the physical network
connectivity from IP. Another practical problem when interpreting traceroute
data is to decide which IP addresses/interface cards (and corresponding DNS
names) refer to the same router, a process known as alias resolution [Spring
et al. 04a]. While one of the contributing factors to the high fidelity of the
current state-of-the-art Rocketfuel maps is the use of an improved heuristic for
performing alias resolution [Spring et al. 04b], further ambiguities remain, as
pointed out, for example, in [Teixeira et al. 03]. Yet another difficulty when
dealing with traceroute-derived measurements has been considered in [Lakhina
et al. 03, Achlioptas et al. 03] and concerns a potential bias whereby IP-level con-
nectivity is inferred more easily and accurately the closer the routers are to the
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Figure 10. Traceroute-derived router-level connectivity data from the Merca-
tor project [Govindan and Tangmunarunkit 00]. (a) Doubly logarithmic size-
frequency plot: Raw data. (b) Doubly logarithmic size-frequency plot: Binned
data. (c) Doubly logarithmic size-rank plot: Raw data with the two extreme
nodes (with connectivity > 1,000) removed. (d) Semi-logarithmic size-rank plot:
Raw data with the two extreme nodes (with connectivity > 1,000) removed.

traceroute source(s). Such bias possibly results in incorrectly interpreting power
law-type degree distributions when the true underlying connectivity structure is
a regular graph (e.g., Erdös-Renýı [Erdös and Renyi 59]).

Ongoing research continues to reveal new idiosyncrasies of traceroute-derived
measurements and shows that their interpretation or analysis requires great
care and diligent mining of other available data sources. Although the chal-
lenges associated with disambiguating the available measurements and identi-
fying those contributions that are relevant for the Internet’s router-level topol-
ogy can be daunting, using these measurements at face value and submitting
them to commonly-used, black box-type statistical analyses—as is common in
the complex systems literature—is ill-advised and bound to result in erroneous
conclusions. To illustrate, Figure 10(a) shows the size-frequency plot for the
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raw traceroute-derived router-level connectivity data obtained by the Merca-
tor project [Govindan and Tangmunarunkit 00], with Figure 10(b) depicting a
smoothed version of the plot in (a), obtained by applying a straightforward bin-
ning operation to the raw measurements, as is common practice in the physics
literature. In fact, Figures 10(a)–(b) are commonly used in the SF literature
(e.g., see [Albert and Barabási 02]) as empirical evidence that the router-level
topology of the Internet exhibits power-law degree distributions. However, in
view of the above-mentioned ambiguities of traceroute-derived measurements, it
is highly likely that the two extreme points with node degrees above 1,000 are
really instances where the high IP-level connectivity is an illusion created by an
underlying Layer 2 technology and says nothing about the actual connectivity at
the physical level. When removing the two nodes in question and relying on the
statistically more robust size-rank plots in Figures 10 (c) and (d), we notice that
neither the doubly logarithmic nor semi-logarithmic plots support the claim of
a power law-type node degree distribution for the Internet’s router-level topol-
ogy. In fact, Figures 10(c) and (d) strongly suggest that the actual router-level
connectivity is more consistent with an exponentially-fast decaying node degree
distribution, in stark contrast to what is typically claimed in the existing SF
literature.

6.2. (Re)Defining Scale-Free Graphs

While it is unlikely that the Internet as a whole has scaling degree sequences,
it would not be in principle technologically or economically infeasible to build
a network that did. It would, however, be utterly infeasible to build a large
network with high-degree SF hubs, or more generally one that had both high
variability in node degree and large s(g). Thus, in making precise the definition
of scale-free, there are essentially two possibilities. One is to define scale-free as
simply having a scaling degree sequence, from which no other properties follow.
The other is to define scale-free more narrowly in such a way that a rich set
of properties are implied. Given the strong set of self-similarity properties of
graphs g having high s(g), we propose the following alternate definition of what
it means for a graph to be scale-free.

Definition 6.1. For graphs g ∈ G(D) where D is scaling, we measure the extent to
which the graph g is scale-free by the metric s(g).

This definition for scale-free graphs is restricted here to simple, connected graphs
having scaling D, but s(g) can obviously be computed for any graphs having
any degree sequence, and thus defining s(g) as a measure of scale-free might



492 Internet Mathematics

potentially be overly narrow. Nonetheless, in what follows, for degree sequences
D that are scaling, we will informally call graphs g ∈ G(D) with low s(g)-
values scale-rich, and those with high s(g)-values scale-free. Being structural in
nature, this alternate definition has the additional benefit of not depending on a
stochastic model underlying the set of graphs of interest. It does not rely on the
statistical physics-inspired approach that focuses on random ensembles and their
most likely elements and is inherent, for example, in the original Barabási-Albert
construction procedure.

Our proposed definition for scale-free graphs requires that for a graph g to be
called scale-free, the degree sequence D of g must be scaling (or, more generally,
highly variable) and self-similar in the sense that s(g) must be large. Further-
more, s(g) gives a quantitative measure of the extent to which a scaling degree
graph is scale-free. In addition, this definition captures an explicit and obvious
relationship between graphs that are scale-free and have a hub-like core of highly
connected centrally-located nodes. More importantly, in view of Step 2 of the
logic at the beginning of Section 6, the claim that scale-free networks have SF
hubs is true with scale-free defined as scaling degree sequence and high s(g), but
false if scale-free were simply to mean scaling degree sequence, as is commonly
assumed in the existing SF literature.

With a concise measure s(g) and its connections with rich self-similarity/self-
dissimilar properties and likelihood, we can look back and understand how both
the appeal and failure of the SF literature is merely a symptom of much broader
and deeper disconnects within complex networks research. First, while there are
many possible equivalent definitions of scale-free, all nontrivial ones would seem
to involve combining scaling degree with self-similarity or high likelihood and
appear to be equivalent. Thus defined, models that generate scale-free graphs are
easily constructed and are therefore not our main focus here. Indeed, because of
the strong invariance properties of scaling distributions alone, it is easy to create
limitless varieties of randomizing generative models that can “grow” graphs with
scaling degree D. Preferential growth is perhaps the oldest of such models [Yule
25, Luria and Delbrück 43, Simon 55], so it is no surprise that it resurfaces
prominently in the recent SF literature. No matter how scaling is generated,
however, the high likelihood and rewiring invariance of high-s(g) graphs make
it far easier—literally highly likely—to insure that these scaling graphs are also
scale-free.

Thus, secondly, the equivalence between high s and highly likely makes it
possible to define scale-free as the likely or generic outcome of a great variety
of random growth models. In fact, that low s or scale-rich graphs are vanish-
ingly unlikely to occur at random explains why the SF literature has not only
ignored their existence and missed their relevance but also conflated scale-free



Li et al.: Towards a Theory of Scale-Free Graphs: Definition, Properties, and Implications 493

with scaling. Finally, since scaling and high s are both so easily and robustly
generated, requiring only few simple statistical properties, countless variations
and embellishments of scale-free models have been proposed, with appealing
but ultimately irrelevant details and discussions of emergence, self-organization,
hierarchy, modularity, etc. However, their additional self-similarity properties,
though still largely unexplored, have made the resulting scale-free networks in-
tuitively appealing, particularly to those who continue to associate complexity
with self-similarity.

The practical implication is that while our proposed definition of what it means
for a graph to be scale-free recovers many claims in the existing SF literature,
some aspects cannot be salvaged. As an alternate approach, we could accept a
definition of scale-free that is equivalent to scaling, as is implicit in most of the SF
literature. However, then the notion of scale-free is essentially trivial, and almost
all claims in the existing literature about SF graphs are false, not just the ones
specific to the Internet. We argue that a much better alternative is a definition of
scale-free, as we propose, that implies the existence of hubs and other emergent
properties but is more restrictive than scaling. Our proposed alternative, that
scale-free is a special case of scaling that further requires high s(g), not only
provides a quantitative measure about the extent to which a graph is scale-free,
but also already offers abundant emergent properties, with the potential for a
rigorous and rich theory.

In summary, notwithstanding the errors in the interpretation and analysis of
available network measurement data, even if the Internet’s router-level graph
were to exhibit a power law-type node degree distribution, we have shown here
and in other papers (e.g., see [Li et al. 04, Willinger et al. 04a]) that the final
conclusion in Step 4 is necessarily wrong for today’s Internet. No matter how
scale-free is defined, the existing SF claims about the Internet’s router-level
topology cannot be salvaged. Adopting our definitions, the router topology at
least for some parts of the Internet could in principle have high variability and
may even be roughly scaling, but it is certainly nowhere scale-free. It is in
fact necessarily extremely scale-rich in a sense that we have made rigorous and
quantifiable, although the diversity of scale-rich graphs means that much more
must be said to describe which scale-rich graphs are relevant to the Internet.
A main lesson learned from this exercise has been that, in the context of such
complex and highly engineered systems as the Internet, it is largely impossible to
understand any nontrivial network properties while ignoring all domain-specific
details such as protocol stacks, technological or economic constraints, and user
demand and heterogeneity, as is typical in SF treatments of complex networks.
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6.3. Towards a Rigorous Theory of SF Graphs

Having proposed the quantity s(g) as a structural measures of the extent to which
a given graph is scale-free, we can now review the characteristics of scale-free
graphs listed in Section 3 and use our results to clarify what is true if scale-free
is taken to mean scaling degree sequence and large s(g):

1. SF networks have scaling (power law) degree sequence (follows by defini-
tion).

2. SF networks are the likely outcome of various random growth processes
(follows from the equivalence of s(g) with a natural measure of graph like-
lihood).

3. SF networks have a hub-like core structure (follows directly from the defi-
nition of s(g) and the betweenness properties of high-degree hubs).

4. SF networks are generic in the sense of being preserved by random degree-
preserving rewiring (follows from the characterization of rewiring invari-
ance of self-similarity).

5. SF networks are universal in the sense of not depending on domain-specific
details (follows from the structural nature of s(g)).

6. SF networks are self-similar (which is now partially clarified in that high
s(g) trees are preserved under both appropriately defined link trimming
and coarse-graining, as well as restriction to small motifs).

Many of these results are proven only for special cases, have only numerical
evidence for general graphs, and thus can undoubtedly be improved upon by
proving them in greater generality. However, in the most important ways, the
proposed definition is entirely consistent with the spirit of scale-free as it appears
in the literature, as noted by its close relationship to previously defined notions
of betweenness, assortativity, degree correlation, and so on. Since a high s(g)-
value requires high-degree nodes to connect to other high-degree nodes, there
is an explicit and obvious equivalence between graphs that are scale-free (i.e.,
have high s(g)-value) and that have a hub-like core of highly connected nodes.
Thus, the statement “scale-free networks have hub-like cores”—while incorrect
under the commonly-used original and vague definition (i.e., meaning scaling
degree sequence)—is now true almost by definition and captures succinctly the
confusion caused by some of the sensational claims that appeared in the scale-
free literature. In particular, the consequences for network vulnerability in terms
of the “Achilles’ heel” and a zero epidemic threshold follow immediately.
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When normalized against a proper background set, our proposed s(g)-metric
provides insight into the diversity of networks having the same degree sequence.
On the one hand, graphs having s(g) ≈ smax are scale-free and self-similar in
the sense that they appear to exhibit strong invariance properties across dif-
ferent scales, where appropriately defined coarse-graining operations (including
link trimming) give rise to the different scales or levels of resolution. On the
other hand, graphs having s(g) 
 smax are scale-rich and self-dissimilar; that
is, they display different structure at different levels of resolution. While for
scale-free graphs, degree-preserving random rewiring does not significantly alter
their structural properties, even a modest amount of rewiring destroys the struc-
ture of scale-rich graphs. Thus, we suggest that a heuristic test as to whether
or not a given graph is scale-free is to explore the impact of degree-preserving
random rewiring. Recent work on the Internet [Li et al. 04] and metabolic net-
works [Tanaka 05] as well as on more general complex networks [Wolpert and
Macready 00] demonstrates that many important large-scale complex systems are
scale-rich and display significant self-dissimilarity, suggesting that their structure
is far from scale-free and the opposite of self-similar.

6.4. SF Models and the Internet?

For the router-level Internet, we have shown that no matter how scale-free is
defined, the existing SF claims about the “robust, yet fragile” nature of these
systems (particularly any claims of an “Achilles’ heel” type of vulnerability)
are wrong. By tracing through the reasoning behind these SF claims, we have
identified the source of this error in the application of SF models to domains like
engineering (or biology) where design, evolution, functionality, and constraints
are all key ingredients that simply cannot be ignored. In particular, by assuming
that scale-free is defined as scaling (or, more generally, highly variable) plus high
s(g), and further using s(g) as a quantitative measure of how scale-free a graph
is, the failure of SF models to correctly and usefully apply in an Internet-related
context has been limited to errors due to ignoring domain-specific details, rather
than to far more serious and general mathematical errors about the properties of
SF graphs themselves. In fact, with our definition, there is the potential for a rich
and interesting theory of SF graphs, looking for relevant and useful application
domains.

One place where SF graphs may be appropriate and practically useful in the
study of the Internet is at the higher levels of network abstraction, where in-
terconnectivity is increasingly unconstrained by physical limitations. That is,
while the lowest layers of the Internet protocol stack involving the physical in-
frastructure such as routers and fiber-optic cables have hard technological and
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economic constraints, each higher layer defines its own unique connectivity, and
the corresponding network topologies become by design increasingly more virtual
and unconstrained. For example, in contrast to routers and physical links, the
connectivity structure defined by the documents (nodes) and hyperlinks (connec-
tions) in the World Wide Web (WWW) is designed to be essentially completely
unconstrained. While we have seen that it is utterly implausible that SF models
can capture the essential features of the router-level connectivity in today’s In-
ternet, it seems conceivable that they could represent virtual graphs associated
with the Internet such as, hypothetically, the WWW or other types of overlay
networks.

However, even in the case of more virtual-type graphs associated with the
Internet, a cautionary note about the applicability of SF models is needed. For
example, consider the Internet at the level of autonomous systems, where an
autonomous system (AS) is a subnetwork or domain that is under its own ad-
ministrative control. In an AS graph representation of the Internet, each node
corresponds to an AS and a link between two nodes indicates the presence of
a peering relationship between the two ASes—a mutual willingness to carry or
exchange traffic. Thus, a single node in an AS graph (e.g., AS 1239 is the Sprint-
link network) represents potentially hundreds or thousands of routers as well
as their interconnections. Although most large ASes have several connections
(peering points) to other ASes, the use of this representation means that one is
collapsing possibly hundreds of different physical (i.e., router-level) connections
into a single logical link between two ASes. In this sense, the AS graph is ex-
pressively not a representation of any physical aspect of the Internet but defines
a virtual graph representing business (i.e., peering) relationships among network
providers (i.e., ASes). Significant attention has been directed toward discover-
ing the structural aspects of AS connectivity as represented by AS graphs and
inferred from BGP-based measurements (where the Border Gateway Protocol
or BGP is the de facto standard inter-AS routing protocol deployed in today’s
Internet [Stewart 99, ANTC 05]) and speculating on what these features imply
about the large-scale properties of the Internet. However, the networking signif-
icance of these AS graphs is very limited since AS connectivity alone says little
about how the actual traffic traverses the different ASes. For this purpose, the
relevant information is encoded in the link type (i.e., peering agreement such as
peer-to-peer or provider-customer relationship) and in the types of routing poli-
cies used by the individual ASes to enforce agreed-upon business arrangements
between two or more parties.

In addition, due to the infeasibility of measuring AS connectivity directly, the
measurements that form the basis for inferring AS-level maps consist of BGP
routing table snapshots collected, for example, by the University of Oregon Route
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Views Project [ANTC 05]. To illustrate the degree of ambiguity in the inferred
AS connectivity data, note for example that due to the way BGP routing works,
snapshots of BGP routing tables taken at a few vantage points on the Internet
over time are unlikely to uncover and capture all existing connections between
ASs. Indeed, [Chang et al. 04] suggests that AS graphs inferred from the Route
Views data typically miss between 20–50% or even more of the existing AS con-
nections. This is an example of the general problem of vantage point mentioned
in [Paxson 04], whereby the location(s) of exactly where the measurements are
performed can significantly skew the interpretation of the measurements, often in
quite counterintuitive ways. Other problems that are of concern in this context
have to do with ambiguities that can arise when inferring the type of peering
relationships between two ASes or, more importantly, with the dynamic nature
of AS-level connectivity, whereby new ASes can join and existing ASes can leave,
merge, or split at any time.

This dynamic aspect is even more relevant in the context of the web graph,
another virtual graph associated with the Internet that is expressively not a
representation of any physical aspect of the Internet structure but where nodes
and links represent pages and hyperlinks of the WWW, respectively. Thus in
addition to the deficiencies mentioned in the context of router-level Internet
measurements, the topologies that are more virtual and “overlay” the Internet’s
physical topology exhibit an aspect of dynamic changes that is largely absent
on the physical level. This questions the appropriateness and relevance of a
careful analysis or modeling of commonly considered static counterparts of these
virtual topologies that are typically obtained by accumulating the connectivity
information contained in a number of different snapshots taken over some time
period into a single graph.

When combined, the virtual nature of AS or web graphs and their lack of
critical networking-specific information make them awkward objects for studying
the “robust yet fragile” nature of the Internet in the spirit of the “Achilles’ heel”
argument [Albert et al. 00] or largely inappropriate structures for investigating
the spread of viruses on the Internet as in [Berger et al. 05]. For example, what
does it mean to “attack and disable” a node such as Sprintlink (AS 1239) in
a representation of business relationships between network providers? Physical
attacks at this level are largely meaningless. On the other hand, the economic
and regulatory environment for ISPs remains treacherous, so questions about
the robustness (or lack thereof) of the Internet at the AS-level to this type
of disruption seem appropriate. And even if one could make sense of physically
attacking and disabling nodes or links in the AS graph, any rigorous investigation
of its “robust yet fragile” nature would have to at least account for the key
mechanisms by which BGP detects and reacts to connectivity disruptions at



498 Internet Mathematics

the AS level. In fact, as in the case of the Internet’s router-level connectivity,
claims of scale-free structure exhibited by inferred AS graphs fail to capture the
most essential “robust yet fragile” features of the Internet because they ignore
any significant networking-specific information encoded in these graphs beyond
connectivity. Again, the actual fragilities are not to physical attacks on AS
nodes but to AS-related components “failing on,” particularly via BGP-related
software or hardware components working improperly or being misconfigured,
or via malicious exploitation or hijacking of BGP itself.

6.5. The Contrasting Role of Randomness

To put our SF findings in a broader context, we briefly review an alternate
approach to the use of randomness for understanding system complexity that
implicitly underpins our approach in a way similar to how statistical physics
underpins the SF literature. Specifically, the notions of Highly Optimized Toler-
ance (HOT) [Carlson and Doyle 99] or Heuristically Organized Tradeoffs [Fab-
rikant et al. 02] have been recently introduced as a conceptual framework for
capturing the highly organized, optimized, and “robust yet fragile” structure
of complex, highly evolved systems [Carlson and Doyle 02]. Introduced in the
spirit of canonical models from statistical physics—such as percolation lattices,
cellular automata, and spin glasses—HOT is an attempt to use simple models
that capture some essence of the role of design or evolution in creating highly
structured configurations, power laws, self-dissimilarity, scale-richness, etc. The
emphasis in the HOT view is on organized complexity, which contrasts sharply
with the view of emergent complexity that is preferred within physics and the
SF community. The HOT perspective is motivated by biology and technology,
and HOT models typically involve optimizing functional objectives of the system
as a whole, subject to constraints on their components, usually with an explicit
source of uncertainty against which solutions must be tolerant, or robust. The
explicit focus on function, constraints, optimization, and organization sharply
distinguish HOT from SF approaches. Both consider robustness and fragility
but reach opposite and incompatible conclusions.

A toy model of the HOT approach to modeling the router-level Internet was
discussed in Section 3.3.2. The underlying idea is that consideration of the eco-
nomic and technological factors constraining design by Internet Service Providers
(ISPs) gives strong incentives to minimize the number and length of deployed
links by aggregating and multiplexing traffic at all levels of the network hierarchy,
from the periphery to the core. In order to efficiently provide high throughput to
users, router technology and link costs thus necessitate that, by and large, link
capacities increase and router degrees decrease from the network’s periphery to
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its more aggregated core. Thus, the toy model HOTnet in Figure 5(d), like the
real router-level Internet, has a mesh of uniformly high-speed low-connectivity
routers in its core, with greater variability in connectivity at its periphery. While
a more detailed discussion of these factors and additional examples is available
from [Li et al. 04, Alderson et al. 05], the result is that this work has explained
where, within the Internet’s router-level topology, the high-degree nodes might
be and why they might be there, as well as where they can’t possibly be.

The HOT network that results is not just different than the SF network but
completely opposite, and this can be seen not only in terms relevant to the
Internet application domain, such as the performance measure (3.1), robustness
to router and link losses, and the link costs, but also in the criteria considered
within the SF literature itself. Specifically, SF models are generated directly
from ensembles and random processes and have generic microscopic features
that are preserved under random rewiring. HOT models have highly structured,
rare configurations that are destroyed by random rewiring, unless that is made
a specific design objective. SF models are universal in ignoring domain details,
whereas HOT is only universal in the sense that it formulates everything in terms
of robust, constrained optimization but with highly domain-specific performance
objectives and constraints. (For additional discussions, see [Doyle et al. 05].)

One theme of the HOT framework has been that engineering design or biolog-
ical evolution easily generates scaling in a variety of toy models once functional
performance, component constraints, and robustness tradeoffs are considered.
Both SF and HOT models of the Internet yield power laws, but once again in
opposite ways and with opposite consequences. HOT emphasizes the importance
of high variability over power laws per se and provides a much deeper connec-
tion between variability or scaling exponents and domain-specific constraints and
features. For example, the HOT Internet model considered here shows that if
high variability occurs in router degree, it can be explained by high variability
in end-user bandwidth together with constraints on router technology and link
costs. Thus, HOT provides a predictive model regarding how different external
demands or future evolution of technology could change network statistics. The
SF models are intrinsically incapable of providing such predictive capability in
any application domain. The resulting striking differences between these two
modeling approaches and their predictions are merely symptomatic of a much
broader gap between the popular physics perspective on complex networks versus
that of mathematics and engineering, created by a profoundly different perspec-
tive on the nature and causes of high variability in real-world data. For example,
essentially the same kind of contrast holds for HOT and SOC models [Carlson
and Doyle 02], where SOC is yet another theoretical framework with specious
claims about the Internet [Solé and Valverde 01, Bak 96].
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In contrast to the SF approach, the HOT models as well as their constraints
and performance measures do not require any assumptions, implicit or explicit,
that they were drawn directly from some random ensemble. Tradeoffs in the
real Internet and biology can be explained without insisting on any underlying
random models. Sources of randomness are incorporated naturally where uncer-
tainty needs to be managed or accounted for, say for the case of the router-level
Internet, in a stochastic model of user bandwidth demands and geographic loca-
tions of users, routers, and links, followed by a heuristic or optimal design. This
can produce either an ensemble of network designs or a single robust design,
depending on the design objective, but all results remain highly constrained and
are characterized by low s(g) and high Perf(g). This is typical in engineering
theories, where random models are common but not required and where uncer-
tainty can be modeled with random ensembles or worst-case over sets. In all
cases, uncertainty models are mixed with additional hard constraints, say, on
component technology.

In the SF literature, on the other hand, random graph models and statistical
physics-inspired approaches to networks are so deep-rooted that an underlying
ensemble is taken for granted. Indeed, in the SF literature the phrase “not
random” typically does not refer to a deterministic process but means random
processes having some nonuniform or high variability distribution, such as scal-
ing. Furthermore, random processes are used to directly generate SF network
graphs rather than model uncertainty in the environment, leading in this case
to high-s(g) and low-Perf(g) graphs. This particular view of randomness also
blurs the important distinction between what is unlikely and what is impossible.
That is, what is unlikely to occur in a random ensemble (e.g., a low-s(g) graph)
is treated as impossible, while what is truly impossible (e.g., an Internet with SF
hubs) from an engineering perspective is viewed as likely from an ensemble point
of view. Similarly, the relation between high variability, scaling, and scale-free
is murky in the SF literature. These distinctions may all be irrelevant for some
scientific questions, but they are crucial in the study of engineering and biology
and also essential for mathematical rigor.

7. Conclusions

The set G(D) of graphs g with fixed scaling degree D is extremely diverse. How-
ever, most graphs in G(D) are, using our definition, scale-free and have high
s-values. This implies that these scale-free graphs are not diverse and actually
share a wide range of emergent features, many of which are often viewed as
both intriguing and surprising, such as hub-like cores, high likelihood under a
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variety of random generation mechanisms, preservation under random rewiring,
robustness to random failure but fragility to attack, and various kinds of self-
similarity. These features have made scale-free networks overwhelmingly com-
pelling to many complex systems researchers and have understandably given
scale-free findings tremendous popular appeal [Barabási and Albert 99, Yook et
al. 02, Albert et al. 00, Ottino 04, Barabási 02, Ball 04]. This paper has confirmed
that these emergent features are plausibly consistent with our definition, and we
have proven several connections, but much remains heuristic and experimental.
Hopefully, more research will complete what is potentially a rich graph-theoretic
treatment of scale-free networks.

Essentially all of the extreme diversity in G(D) is in its fringes that are occu-
pied by the rare scale-rich small-s graphs. These graphs have little or nothing in
common with each other or with scale-free graphs beyond their degree sequence,
so, unfortunately, s is a nearly meaningless measure for scale-rich graphs. We
have shown that those technological networks which have functional requirements
and component constraints tend to be scale-rich, and HOT is a theoretical frame-
work aimed at explaining in simplified terms the features of these networks. In
this context, scale-free networks serve at best as plausible null hypotheses that
typically collapse quickly under scrutiny with real data and are easily refuted
by applying varying amounts of domain knowledge. A roughly parallel SF vs.
HOT story exists in metabolic networks (see, for example, [Tanaka 05]), which
is another application area that has been very popular in the SF and broader
complex networks literature [Barabási and Oltvai 04].

At the same time, scale-free networks may still be relevant when applied to
social or virtual networks where technological, economic, or other constraints
play perhaps a lesser or no role whatsoever. Indeed, a richer and more complete
and rigorous theory could potentially help researchers working in such areas. For
example, as discussed in Section 4.4.1, exploring the impact of degree-preserving
random rewiring of components can be used as a simple preliminary litmus test
for whether or not a SF model might be appropriate. It takes little domain
expertise to see that randomly rewiring the internal connections of, say, the
microchips or transistors in a laptop computer or the organs in a human body
will utterly destroy their function, and thus that SF models are unlikely to
be informative. On the other hand, one can think of some technological (e.g.,
wireless ad-hoc networks) and many social networks where robustness to some
kinds of random rewiring is an explicitly desirable objective, and thus SF graphs
are not so obviously inapplicable. For example, it might be instructive to apply
this litmus test to an AS graph that reflects AS connectivity only as compared
to the same graph that also provides information about the type of peering
relationships and the nature of routing policies in place.
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This paper shows that scale-free networks have the potential for an interesting
and rich theory, with most questions, particularly regarding graphs that are not
trees, still largely open. Perhaps a final message of this paper is that to develop
a coherent theory for scale-free networks will require adhering to more rigorous
mathematical and statistical standards than has been typical to date.

A. Constructing an smax Graph

As defined previously, the smax graph is the element g in some background set G

whose connectivity maximizes the quantity s(g) =
∑

(i,j)∈E didj , where di is the
degree of vertex i ∈ V, E is the set of links that define g, and D = {d1, d2, . . . dn}
is the corresponding degree sequence. Recall that since D is ordered according
to d1 ≥ d2 ≥ · · · ≥ dn, there will usually be many different graphs with vertices
satisfying D. The purpose of this appendix is to describe how to construct such
an element for different background sets, as well as to discuss the importance of
choosing the “right” background set.

A.1. Among Unconstrained Graphs

As a first case, consider the set of graphs having degree sequence D, with only the
requirement that

∑n
i=1 di be even. That is, we do not require that these graphs

be simple (i.e., they can have self-loops or multiple links between vertices) or that
they even be connected, and we accordingly call this set of graphs unconstrained.
Constructing the smax element among these graphs can be achieved trivially by
applying the following two-phase process. First, for each vertex i: if di is even,
then attach di/2 self-loops; if di is odd, then attach (di − 1)/2 self-loops, leaving
one available stub. Second, for all remaining vertices with stubs, connect them
in pairs according to decreasing values of di. Obviously, the resulting graph is
not unique as the smax element (indeed, two vertices with the same degree could
replace their self-loops with connections among one another). Nonetheless, this
construction does maximize s(g), and in the case when di is even for all i ∈ V, one
achieves an smax graph with s(g) =

∑n
i=1(di/2) ·d2

i . As discussed in Section 5.4,
against this background of unconstrained graphs, the smax graph is the perfectly
assortative (e.g., r(g) = 1) graph. In the case when some di are odd, then the
smax graph will have a value of s(g) that is somewhat less and will depend on the
specific degree sequence. Thus, the value

∑n
i=1(di/2) · d2

i represents an idealized
upper bound for the value of smax among unconstrained graphs, but it can only
be realized in the case when all vertex degrees are even.
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A.2. Among Graphs in G(D)

A significantly more complicated situation arises when constructing elements
of the space G(D), that is, simple connected graphs having n vertices and a
particular degree sequence D. Even so, not all sequences D will allow for the
connection of n vertices: i.e., the set G(D) may be empty. In the language
of discrete mathematics, one says that a sequence of integers {d1, d2, . . . , dn} is
graphical if it satisfies the degree sequence of some simple, connected graph, that
is, if G(D) is nonempty. One characterization of whether or not a sequence D

corresponds to a simple, connected graph is due to Erdös and Gallai [Erdös and
Gallai 60].

Theorem A.1. [Erdös and Gallai 60] A sequence of positive integers d1, d2, . . . , dn

with d1 ≥ d2 ≥ · · · ≥ dn is graphical if and only if
∑n

i=1 di is even and for each
integer k, 1 ≤ k ≤ n − 1,

k∑
j=1

dj ≤ k(k − 1) +
n∑

j=k+1

min(k, dj).

As already noted, one possible problem is that the sequence may have “too
many” or “too few” degree-one vertices. For example, since the total number of
links l in any graph will be equal to l =

∑n
i=1 di/2, a connected graph cannot

have an odd
∑n

i=1 di, but if this happens then adding or subtracting a degree-one
vertex to D would “fix” this problem. Theorem A.1 further states that addi-
tional conditions are required to ensure a simple connected graph, specifically
that the degree of any vertex cannot be “too large.” For example, the sequence
{10, 1, 1, 1} cannot correspond to a simple graph. We will not attempt to explain
all such conditions, except to note that improvements have been made to Theo-
rem A.1 that reduce the number of sufficient conditions to be checked [Tripathi
and Vijay 03] and also that several algorithms have been developed to test for
the existence of a graph satisfying a particular degree sequence D (e.g., see the
section on “Generating Graphs” in [Skiena 97]).

Our approach to constructing the smax element of G(D) is via a heuristic
procedure that incrementally builds the network in a greedy fashion, by iterating
through the set of all potential links O = {(i, j) : i < j; i, j = 1, 2, . . . , n}, which
we order according to decreasing values of didj . In what follows we refer to
the value didj as the weight of link (i, j). We add links from the ordered list
of elements in O until all vertices have been added and the corresponding links
satisfy the degree sequence D. To facilitate the exposition of this construction,
we introduce the following notation. Let A be the set of vertices that have
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been added to the partial graph g̃A, such that B = V\A is the set of remaining
vertices to be added. At each stage of the construction, we keep track of the
current degree for vertex i, denoted d̃i, so that it may be compared with its
intended degree di (note that d̃i = 0 for all i ∈ B). Define w̃i = di − d̃i as the
number of remaining stubs, that is, the number of connections still to be made
to vertex i. Note that values of d̃i and w̃i will change during the construction
process, while the intended degree di remains fixed. For any point during the
construction, define w̃A =

∑
i∈A w̃i to be the total number of remaining stubs

in A and dB =
∑

i∈B di to be the total degree of the unattached vertices in B.
The values w̃A and dB are critical to ensuring that the final graph is connected
and has the intended degree sequence. In particular, our algorithm will make
use of several conditions.

Condition A.2. (Disconnected Cluster Condition A.) If at any point during the incremental
construction the partial graph g̃A has w̃A = 0 while |B| > 0, then the final graph
will be disconnected.

Proof. By definition w̃A is the number of stubs available in the partial graph g̃A.
If there are additional nodes to be added to the graph but no more stubs in
the partial graph, then any incremental growth can occur only by forming an
additional, separate cluster.

Condition A.3. (Disconnected Cluster Condition B.) If at any point during the construction
algorithm the partial graph g̃A has w̃A = 2 with |B| > 0, then adding a link
between the two stubs in g̃A will result in a disconnected graph.

Proof. Adding a link between the two stubs will yield w̃A = 0 with |B| > 0, thus
resulting in Condition A.2.

Condition A.4. (Tree Condition.) If at any point during the construction

dB = 2|B| − w̃A, (A.1)

then the addition of all remaining vertices and links to the graph must be acyclic
(i.e., tree-like, without loops) in order to achieve a single connected graph while
satisfying the degree sequence.

Proof. To see this more clearly, suppose that for some intermediate point in the
construction process that w̃A = m. That is, there are exactly m remaining stubs
in the connected component to which the remaining vertices in B must attach.
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We can prove that, in order to satisfy the degree sequence while maintaining a
single connected graph, each of these m stubs must become the root of a tree.
First, recall from basic graph theory that an acyclic graph connecting n vertices
will have exactly l = n − 1 links. Define Bj ⊂ B for j = 1, . . . , m to be the
subset of remaining vertices to be added to stub j, where

⋃m
j=1 Bj = B. Further

assume for the moment that
⋂m

j=1 Bj = ∅, that is, each vertex in B connects to
a subgraph rooted at one and only one stub. Connecting the vertices in Bj to
a subgraph rooted at stub j will require a minimum of |Bj | links (i.e., |Bj | − 1
links to form a tree among the |Bj | vertices plus one additional link to connect
the tree to the stub). Thus, in order to connect the vertices in the set Bj as a
tree rooted at stub j, we require

∑
k∈Bj

dk = 2|Bj |−1, and to attach all vertices
in B to the m stubs, we have

dB =
∑
i∈B

di =
m∑

j=1

∑
k∈Bj

dk

=
m∑

j=1

(2|Bj | − 1)

= 2|B| − m

= 2|B| − w̃A.

Thus, at the point when (A.1) occurs, only trees can be constructed from the
remaining vertices in B.

A.2.1. The Algorithm. Here, we introduce the algorithm for our heuristic construc-
tion and then discuss the conditions when this construction is guaranteed to
result in the smax graph.

• Step 0 (Initialization): Initialize the construction by adding vertex 1 to
the partial graph; that is, begin with A = {1}, B = {2, 3, . . . , n}, and
O = {(1, 2), . . . }. Thus, w̃A = d1 and dB =

∑n
i=2 di.

• Step 1 (Link Selection): Check to see if there are any admissible elements
in the ordered list O.

(a) If |O| = 0, then terminate. Return the graph g̃A.

(b) If |O| > 0, select the element(s), denoted here as (i, j), having the
largest weight didj , noting that there may be more than one of them.
For each such link (i, j), check w̃i and w̃j : if either w̃i = 0 or w̃j = 0,
then remove (i, j) from O.

(c) If no admissible links remain, return to Step 1(a).
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(d) Any remaining selected links (i, j) now have maximum didj ∈ O and
satisfy both w̃i > 0 and w̃j > 0. To choose among these “equivalent”
links, select the element (i, j) such that i has the largest value w̃i

among i ∈ A. If there is more than one such link, choose the one for
which j also has the largest value w̃j (note that j could be an element
of A or B). Proceed to Step 2.

• Step 2 (Link Addition): The link (i, j) to be added represents one of two
types of connections.

– Type I: i ∈ A, j ∈ B. Here, vertex i is the highest-degree vertex in
A with nonzero hubs (i.e., di = maxk∈A dk and w̃i > 0) and j is the
highest-degree vertex in B. Add link (i, j) to the partial graph g̃A:
remove vertex j from B and add it to A, decrement w̃i and w̃j , and
update both w̃A and dB accordingly. Remove (i, j) from the ordered
list O.

– Type II: i ∈ A, j ∈ A, i 	= j. Here, i and j are the largest vertices in
A for which w̃i > 0 and w̃j > 0.

∗ Check the Tree Condition: If dB = 2|B| − w̃A, then Type II links
are not permitted. Remove the link (i, j) from O without adding
it to the partial graph.

∗ Check the Disconnected Cluster Condition: If w̃A = 2, then
adding this link would result in a disconnected graph. Remove
the link (i, j) from O without adding it to the partial graph.

∗ Else, add the link (i, j) to the partial graph: decrement w̃i and
w̃j , and update w̃A accordingly. Remove (i, j) from the ordered
list O.

Note: The possibility of adding link (i, j) where i ∈ B, j ∈ B, and i 	= j

is precluded here. One way this might have happened is if there were
no remaining stubs in the partial graph g̃A, a situation precluded by the
test for the Disconnected Cluster Condition among Type II link additions.
The other possibility is that didj > didk, where i, j ∈ B and k ∈ A with
w̃k > 0. Since k ∈ A, there exists k′ ∈ A such that the link (k, k′) was
already added to the graph. This in turn implies that dkdk′ ≥ djdk′ , or
equivalently that dk ≥ dj . This yields didk ≥ didj , a contradiction with
didj > didk.

• Step 3 (Repeat): Return to Step 1.
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Each iteration of the algorithm either adds a link from the list in O or removes
it from consideration. Since there are a finite number of elements in O, the
algorithm is guaranteed to terminate in a finite number of steps. Furthermore,
the ordered nature of O ensures the following property.

Proposition A.5. At each point during the construction by the algorithm, for any
vertices i ∈ A and j ∈ B, di ≥ dj.

Proof. By construction, if i ∈ A and j ∈ B, then for some previously added vertex
k ∈ A, it must have been the case that dkdi ≥ dkdj . Since dk > 0, it follows
that di ≥ dj .

A less obvious feature of this construction is whether or not the algorithm
returns a simple connected graph satisfying degree sequence D (if one exists).
While this remains an open question, we show that if the Tree Condition is
ever reached, then the algorithm is guaranteed to return a graph satisfying the
intended degree sequence.

Proposition A.6. (Tree Construction.) Given a graphic sequence D, if at any point during
the algorithm the Tree Condition is satisfied, then

(a) the Tree Condition will remain satisfied through all intermediate construc-
tion, and

(b) the final graph will exactly satisfy the intended degree sequence.

Proof. To show part (a), assume that dB = 2|B|− w̃A and observe that as a result
only a link satisfying Type I can be added next by our algorithm. Thus, the
next link (i, j) to be added will have i ∈ A and j ∈ B, and in doing so we will
move vertex j from the working set B to A. As a result of this update, we will
have ∆dB = −dj , ∆|B| = −1, and ∆w̃A = dj − 2. Thus, we have updated the
following values:

d′B ≡ dB + ∆dB
= dB − dj ,

2|B′| − w̃′
A ≡ 2(|B| + ∆|B|) − (w̃A + ∆w̃A)

= 2(|B| − 1) − (w̃A + dj − 2)

= 2|B| − w̃A − dj

= dB − dj .

Thus, d′B = 2|B′| − w̃′
A, and the Tree Condition will continue to hold after the

addition of each subsequent Type I link (i, j).
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To show part (b), observe that after |B| Type I link additions (each of which
results in ∆|B| = −1), the set B will be empty, thereby implying also that dB = 0.
Since the relationship dB = 2|B| − w̃A continues to hold after each Type I link
addition, then it must be that |B| = 0 and dB = 0 collectively imply w̃A = 0.
Furthermore, since w̃A =

∑
i∈A w̃i and w̃i = di − d̃i ≥ 0 for all i, then w̃i = 0

for all i, and the degree sequence is satisfied.

An important question is under what conditions the Tree Condition is met
during the construction process. Rewriting this condition as dB − [2|B| − w̃A] =
0, observe that when the algorithm is initialized in Step 0, we have dB =

∑n
i=2 di,

w̃A = d1, and |B| = n − 1. This implies that after initialization we have

dB − [2|B| − w̃A] =
n∑

i=2

di − 2|B| + d1 =
n∑

i=1

di − 2(n − 1).

Note that minimal connectivity among n nodes is achieved by a tree having
total degree

∑n
i=1 di = 2(n− 1), and this corresponds to the case when the Tree

Condition is met at initialization. However, if the sequence D is graphical and
the Tree Condition is not met at initialization, then dB − [2|B| − w̃A] = 2z > 0,
where z = (

∑n
i=1 di/2) − (n − 1) is the number of “extra” links above what a

tree would require. Assuming z > 0, consider the outcome of subsequent Link
Addition operations, as defined in Step 2:

• As already noted, when a Type I connection is made (thus adding a new
vertex j to the graph), we have ∆dB = −dj , ∆w̃A = dj−2, and ∆|B| = −1,
which in turn means that Type I connections result in ∆ (dB − [2|B| − w̃A])
= 0.

• Accordingly, when a Type II connection is made between two stubs in
A, we have ∆w̃A = −2, and both |B| and dB remain unchanged. Thus,
∆ (dB − [2|B| − w̃A]) = −2.

So, if dB − [2|B| − w̃A] = 2z > 0, then subsequent link additions will cause this
value to either decrease by two or remain unchanged; in other words, adding ad-
ditional links can only bring the algorithm closer to the Tree Condition. Nonethe-
less, our algorithm is not guaranteed to reach the Tree Condition for all graphic
sequences D (i.e., we have not proved this), although we have not found any
counterexamples in which the algorithm fails to achieve the desired degree se-
quence. If that were to happen, however, the algorithm would terminate with
w̃i > 0 for some vertex i ∈ A, even though |B| = 0. Nonetheless, in the case
where the graph resulting from our construction does satisfy the intended degree
sequence D, we can prove that it is indeed the smax graph.
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Proposition A.7. (General Construction.) If the graph g resulting from our algorithm is
a connected, simple graph satisfying the intended degree sequence D, then this
graph is the smax graph of G(D).

Proof. Observe that, in order to satisfy the degree sequence D, the graph g contains
a total of l =

∑n
i=1 di/2 links from the ordered list O. Since elements of O are

ordered by decreasing weight didj , it is obvious that, in the absence of constraints
that require the final graph to be connected or satisfy the sequence D, a graph
containing the first l elements of O will maximize

∑
(i,j)∈E didj . However, in

order to ensure that g is an element of the space G(D), when selecting the l

links, it is usually necessary to “skip” some elements of O, and Conditions A.2–
A.4 identify two simple situations where skipping a potential link is required.
While skipping links under other conditions may be necessary to guarantee that
the resulting graph satisfies D (indeed, the current algorithm is not guaranteed
to do this), our argument is that if these are the only conditions under which
elements of O have been skipped during construction and the resulting graph
does satisfy D, then the resulting graph maximizes s(g).

To see this more clearly, consider a second graph g̃ 	= g also constructed from
the ordered list O. Let E ⊂ O be the (ordered) list of links in the graph g, and
let Ẽ ⊂ O be the (ordered) list of links in the graph g̃. Assume that these two
lists differ by only a single element, namely e ∈ E , e 	∈ Ẽ and ẽ 	∈ E , ẽ ∈ Ẽ , where
E\e = Ẽ\ẽ. By definition, both e and ẽ are elements of O, and there are two
possible cases for their relative position within this ordered list (here, we use the
notation “≺” to mean “proceeds in order”).

• If e ≺ ẽ, then g̃ uses in place of e a link that occurs “later” in the sequence
O. However, since O is ordered by weight, using ẽ cannot result in a higher
value for s(g̃).

• If ẽ ≺ e, then g̃ uses in place of e a link that occurs “earlier” in the sequence
O—one that had been “skipped” in the construction of g. However, the
“skipped” elements of O will correspond to instances of Conditions A.2–
A.4, and using them must necessarily result in a graph g̃ 	∈ G(D) because
it is either disconnected or because its degree sequence does not satisfy D.

Thus, for any other graph g̃, it must be the case that either s(g̃) ≤ s(g) or
g̃ 	∈ G(D), and therefore we have shown that g is the smax graph.

A.3. Among Connected, Acyclic Graphs

In the special case when
∑n

i=1 di = 2(n− 1), there exists only one type of graph
structure that will connect all n nodes, namely an acyclic graph (i.e., a tree).
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All connected acyclic graphs are necessarily simple. Because acyclic graphs are
a special case of elements in G(D), generating smax trees is achieved by making
the appropriate Type I connections in the aforementioned algorithm. In effect,
this construction is essentially a type of deterministic preferential attachment,
one in which we iterate through all vertices in the ordered list D and attach each
to the highest-degree vertex with a remaining stub.

In the case of trees, the arguments underlying the smax proof can be made
more precise. Observe that the incremental construction of a tree is equivalent
to choosing for each vertex in B the single vertex in A to which it becomes
attached. Consider the choices available for connecting two vertices k,m ∈ B
to vertices i, j ∈ A where di ≥ dj , dk ≥ dm, and observe that didk + didm ≥
didk + djdm ≥ djdk + didm ≥ djdk + djdm, where the second inequality follows
from Proposition 3 while the first and last inequalities are by assumption. There
are two cases of interest. First, if w̃i > 1 and w̃j ≥ 1, then it is clear that it is
optimal to connect both vertices k,m ∈ B to vertex i ∈ A. Second, if w̃i = 1 and
w̃j ≥ 1, then it is clear that it is optimal to connect k ∈ B to i ∈ A and m ∈ B to
j ∈ A. All other scenarios can be decomposed into these two cases, thus proving
that the algorithm’s incremental construction for a tree is guaranteed to result
in the smax graph.

There are many important properties of smax trees that are discussed in Sec-
tion 4, which we now prove.

A.3.1. Properties of smax Acyclic Graphs Recall that our working definition of so-called
betweenness (also known as betweenness centrality) for a vertex v ∈ V in an
acyclic graph is given by

Cb(v) =
∑

s<t∈V σst(v)∑
s<t∈V σst

=
σ̄(v)

n(n − 1)/2
,

where we use the notation σ̄(v) to denote the number of unique paths in the
graph passing through node v, and where the total number of unique paths
between vertex pairs s and t is n(n − 1)/2.

For a given node v ∈ V, let N (v) denote the set of neighboring nodes, where
by definition |N (v)| = dv. For all nodes that are not the root of the tree, exactly
one of these neighbors will be upstream while the rest will be downstream (in
contrast, the root node has only downstream neighbors). Define bj to be the
total number of nodes connected through the jth neighbor. Our convention will
be to denote the upstream neighbor with index 0 (if it exists); thus, for all nodes
v other than the root, one has

∑dv−1
j=0 bj = n − 1 (for the root node r, the

appropriate summation is
∑dr

j=1 bj = n − 1). Using this notation, it becomes
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clear that, for each node v other than the root of the tree, we can express

σ̄(v) =
dv−1∑
j,k=0
j<k

bjbk = b0

dv−1∑
k=1

bk +
dv−1∑
j,k=1
j<k

bjbk.

Thus, σ̄(v) decomposes into two components: the first measures the number
of paths between upstream and downstream nodes that pass through node v,
and the second measures the number of paths passing through node v that
are between downstream nodes only. Since

∑
s<t∈V σst is a constant for trees

containing n nodes, when comparing the centrality for two nodes u and v, we
work directly with σ̄(u) and σ̄(v). In so doing, for nodes u and v we will denote
bu
j , bv

j as the number of nodes connected to each via their respective jth neighbor.
One property of the smax graph that will be useful for showing that there exists

monotonicity between node centrality and node degree is given by the following
lemma.

Lemma A.8. Let g be the smax acyclic graph for degree sequence D, and consider
two nodes u, v ∈ V satisfying du > dv. Then, it necessarily follows that

du−1∑
j,k=1
j<k

bu
j bu

k >

dv−1∑
j,k=1
j<k

bv
j bv

k. (A.2)

Note that the summation is over downstream nodes only, thus Lemma A.8 states
that, for smax trees, the contribution to centrality from paths between down-
stream nodes is greater for nodes with higher degree.

Proof of Lemma A.8. Recalling from Proposition 4.2 that bu
j ≥ bv

j for all j =
1, 2, . . . , dv − 1, and noting that du > dv,

du−1∑
j,k=1
j<k

bu
j bu

k =
dv−1∑
j,k=1
j<k

bu
j bu

k +
dv−1∑
j=1

du−1∑
k=dv

bu
j bu

k +
du−1∑
j,k=dv

j<k

bu
j bu

k

>

dv−1∑
j,k=1
j<k

bv
j bv

k +
dv−1∑
j=1

du−1∑
k=dv

bu
j bu

k +
du−1∑
j,k=dv

j<k

bu
j bu

k

>

dv−1∑
j,k=1
j<k

bv
j bv

k.

Thus, the proof is complete.
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Figure 11. Centrality of high-degree nodes in the smax tree.

Lemma A.8 in turn facilitates a proof of the more general statement regarding
the centrality of nodes in the smax acyclic graph, as stated in Proposition 4.4.

Proof of Proposition 4.4. We proceed in two parts. First, we show that if node v

is downstream from node u, then σ̄(u) > σ̄(v). Second, we show that if v is
in a different branch of the tree from u (i.e., neither upstream nor downstream
from u) but du > dv, then σ̄(u) > σ̄(v).

Starting first with the scenario where v is downstream from u, there are two
cases that need to be addressed.

Case 1: Node v is directly downstream from node u, and node u is the root of
the tree. Observe that we can represent σ̄(v) as

σ̄(v) = bv
0

dv−1∑
k=1

bv
k +

dv−1∑
j,k=1
j<k

bv
j bv

k

=
( du∑

j=1
j �=v

bu
j

)(
bu
v − 1

)
+

dv−1∑
j,k=1
j<k

bv
j bv

k, (A.3)
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since bv
0 =

∑du

j=1;j �=v bu
j and also that bu

v = 1 +
∑dv−1

k=1 bv
k. For node u, we have

σ̄(u) =
du∑

j,k=1
j<k

bu
j bu

k

= bu
v

du∑
k=1
k �=v

bu
k +

du∑
j,k=1

j<k;j,k �=v

bu
j bu

k . (A.4)

Comparing σ̄(u) and σ̄(v), we observe that the first term of (A.4) is clearly
greater than the first term of (A.3). Furthermore, by Lemma A.8, we also
observe that the second term of (A.4) is also greater than the second term of
(A.3). Thus, we conclude for this case that σ̄(u) > σ̄(v).

Case 2: Node v is directly downstream from node u, but node u is not the root
of the tree. Recognizing for any node i that

∑di−1
j=1 bj = (n − 1) − b0, we write

σ̄(u) = bu
0

(
n − 1 − bu

0

)
+

du−1∑
j,k=1
j<k

bu
j bu

k ,

σ̄(v) = bv
0

(
n − 1 − bv

0

)
+

dv−1∑
j,k=1
j<k

bv
j bv

k.

As before, we observe from Lemma A.8 that
∑du−1

j,k=1;j<k bu
j bu

k >
∑dv−1

j,k=1;j<k bv
j bv

k,

so proving that σ̄(u) > σ̄(v) in this case requires simply that we show that

bu
0

(
(n − 1) − bu

0

)
> bv

0

(
(n − 1) − bv

0

)
. (A.5)

Observe that bv
0 = bu

0 + 1 +
∑du−1

j=1;j �=v bu
j . As a result, we have

bv
0

(
(n − 1) − bv

0

)
=

(
bu

0 + 1 +
du−1∑

j=1
j �=v

bu
j

)(
(n − 1) − bu

0 − 1 −
du−1∑

j=1
j �=v

bu
j

)

= bu
0

(
(n − 1) − bu

0

)
+

(
1 +

du−1∑
j=1
j �=v

bu
j

)

×
(

(n − 1) − 2bu
0 −

(
1 +

du−1∑
j=1
j �=v

bu
j

))
.
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Since 1 +
∑du−1

j=1;j �=v bu
j > 0, (A.5) is true if and only if

(n − 1) − 2bu
0 −

(
1 +

du−1∑
j=1
j �=v

bu
j

)
< 0,

which is equivalent to

(n − 1) − bu
0 < bu

0 + 1 +
du−1∑

j=1
j �=v

bu
j

du−1∑
k=1

bu
k < bu

0 + 1 +
du−1∑

j=1;j �=v

bu
j

bu
v < bu

0 + 1.

This final statement will always be true for the smax tree, since the “upstream”
branch from node u will always contain at least as many nodes as the downstream
branch corresponding to node v.

These two cases prove that any “upstream” node in the smax tree is always
more central than any “downstream” node, since by extension if u is directly
upstream from v then σ̄(u) > σ̄(v), and if v is directly upstream from w then
σ̄(v) > σ̄(w). It therefore follows that σ̄(u) > σ̄(w), and, by induction, that the
“root” node of the smax tree (having highest degree) is the most central within
the entire tree.

Case 3: Now we turn to the case where node v is not directly downstream (or
upstream) from node u. As before, we write

σ̄(u) = bu
0

du−1∑
k=1

bu
k +

du−1∑
j,k=1;j<k

bu
j bu

k ,

σ̄(v) = bv
0

dv−1∑
k=1

bv
k +

dv−1∑
j,k=1;j<k

bv
j bv

k.

As with the previous cases, by Lemma A.8 we know that
∑du−1

j,k=1;j<k bu
j bu

k >∑dv−1
j,k=1;j<k bv

j bv
k, so proving that σ̄(u) > σ̄(v) in this case requires simply that

we show that

bu
0

du−1∑
k=1

bu
k > bv

0

dv−1∑
k=1

bv
k. (A.6)
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We rewrite each of these as

bu
0 =

dv−1∑
j=1

bv
j +

(
bu

0 −
dv−1∑
j=1

bv
j

)
,

bv
0 =

du−1∑
j=1

bu
j +

(
bv

0 −
du−1∑
j=1

bu
j

)
,

so that we have

bu
0

du−1∑
k=1

bu
k =

( dv−1∑
j=1

bv
j +

(
bu

0 −
dv−1∑
j=1

bv
j

)) du−1∑
k=1

bu
k ,

bv
0

dv−1∑
k=1

bv
k =

( du−1∑
j=1

bu
j +

(
bv

0 −
du−1∑
j=1

bu
j

)) dv−1∑
k=1

bv
k,

and we observe that

bu
0 −

dv−1∑
j=1

bv
j = bv

0 −
du−1∑
j=1

bu
j ,

which is a nonnegative constant, that we denote κ. Thus,

bu
0

du−1∑
j=1

bu
j − bv

0

dv−1∑
j=1

bv
j = κ

( du−1∑
j=1

bu
j −

dv−1∑
j=1

bv
j

)
,

which is also nonnegative since
∑du−1

j=1 bu
j >

∑dv−1
j=1 bv

j , and so (A.6) also holds.
Thus, we have shown that σ̄(u) > σ̄(v) in the smax tree whenever du > dv, thus
completing the proof.
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Figure 2: A COMMON ERROR WHEN INFERRING/ESTIMATING SCALING BEHAVIOR. (a) 1000 integer data points sampled from
the scaling distribution P (X ≥ x) = x−1, for x ≥ 1. The lower size-frequency plot (blue circles) tends to underestimate
the scaling index α; it supports a slope estimate of about -1.67 (red dashed line), implying an α-estimate of about 0.67 that is
obviously inconsistent with the true value of α = 1 (green line). The size-rank plot of the exact same data (upper, black dots)
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(b) 1000 data points sampled from an exponential distribution plotted on log-linear scale. The size-rank plot clearly shows
that the data are exponential and that scaling is implausible. (c) The same data as in (b) plotted on log-log scale. Based on
the size-frequency plot, it is plausible to infer incorrectly that the data are consistent with scaling behavior, with a slope estimate
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DEGREE SEQUENCE. As toy models of the router-level Internet, all graphs are subject to same router technology constraints and
the same traffic demand model for routers at the network periphery. (a) Hierarchical scale-free (HSF) network: Following
roughly a recently proposed construction that combines scale-free structure and inherent modularity in the sense of exhibiting
an hierarchical architecture [Ravasz et al. 02], we start with a small 3-pronged cluster and build a 3-tier network a la Ravasz-
Barabási, adding routers at the periphery roughly in a preferential manner. (b) Random network: This network is obtained
from the HSF network in (a) by performing a number of pairwise random degree-preserving rewiring steps. (c) Poor design:
In this heuristic construction, we arrange the interior routers in a line, pick a node towards the middle to be the high-degree,
low bandwidth bottleneck, and establish connections between high-degree and low-degree nodes. (d) HOT network: The
construction mimics the build-out of a network by a hypothetical ISP. It produces a 3-tier network hierarchy in which the high-
bandwidth, low-connectivity routers live in the network core while routers with low-bandwidth and high-connectivity reside at the
periphery of the network. (e) Node degree sequence for each network. Only di > 1 shown.
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Figure 9: RESULTS FROMMONTE CARLO GENERATION OF PREFERENTIAL ATTACHMENT GRAPHS HAVING1000 NODES. For each
trial, we compute the value s(g) and then renormalize to S(g) against the smax graph having the same degree sequence. Both
the CDF and CCDF are shown. In comparison, the HOTnetgraph has S(HOTnet) = 0.3862 and S(HSFnet) = 0.9568.
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Figure 10: TRACEROUTE-DERIVED ROUTER-LEVEL CONNECTIVITY DATA FROM THE MERCATOR PROJECT[GOVINDAN AND TANG-
MUNARUNKIT 00]. (a) Doubly logarithmic size-frequency plot: Raw data. (b) Doubly logarithmic size-frequency plot:
Binned data. (c) Doubly-logarithmic size-rank plot: Raw data with the 2 extreme nodes (with connectivity > 1,000) removed.
(d) Semi-logarithmic size-rank plot: Raw data with the 2 extreme nodes (with connectivity > 1,000) removed.
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