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Abstract-The structured singular value p measures the robustness 
of uncertain systems. Numerous researehers over the last decade have 
worked on developing efficient methods for computing p. This paper 
considers the complexity of calculating p with general mixed dcomplex  
uncertainty in the framework of combinatorial complexity theory. In 
particular, it is proved that the p recognition problem with either 
pure real or mixed reaUcomplex uncertainty is NP-hard. This strongly 
suggests that it is fbtile to pursue exact methods for calculating p of 
general systems with pure real or mixed uncertainty for other than smal l  
problems. 

I. INTRODUCTION 
Robust stability and performance analysis with real parametric and 

dynamic uncertainties can be naturally formulated as a structured 
singular value (or p )  problem, where the block structured uncertainty 
description is allowed to contain both real and complex blocks. It 
is assumed that the reader is familiar with this type of robustness 
analysis, as space constraints preclude covering this here. For a 
collection of papers describing the engineering motivation and the 
computational approaches, see [3] and the references contained 
within. 

In this work, we determine the computational complexity of p 
calculation with either pure real or mixed redcomplex uncertainty. 
To apply computational complexity theory, we formulate p calcula- 
tion as a recognition problem (a "yes" or "no" problem). We show 
that this recognition problem is NP-hard, i.e., at least as hard as the 
NP-complete problems. 

The exact consequences of a problem being NP-complete is still a 
fundamental open question in the theory of computational complexity, 
and we refer the reader to Garey and Johnson [5] for an in-depth 
treatment of the subject. However, it is generally accepted that a 
problem being NP-complete means that it cannot be computed in 
polynomial time in the worst case. It is important to note that 
being NP-complete is a property of the problem itself, not of any 
particular algorithm. The fact that the mixed p problem is NP-hard 
strongly suggests that, given any algorithm to compute p, there 
will be problems for which the algorithm cannot find the answer 
in polynomial time. 

The terminology of computational complexity theory is used 
extensively in this note. The definitions for NP-complete, NP-hard, 
recognition problems, and other terms agree with those in the well- 
known textbooks by Garey and Johnson [5] and Papadimitriou and 
Steiglitz [8]. 

The proofs are simple. First, we show that indefinite quadratic 
programming can be cast as a p problem of "roughly" the same size. 
Since the recognition problem for indefinite quadratic programming 
is NP-complete, the p recognition problem must be NP-hard. 

Nomenclature: Matrices are upper case; vectors and scalars are 
lower case. R is the set of real numbers; C is the set of complex 
numbers; 2 is the set of integers; Q is the set of rationals. F ( A )  is 
the maximum singular value of matrix A and I,. is the T x T identity 
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matrix. Define the set A of block diagonal perturbations by 

A E diag { h : I r l , .  . . , S;Ir,, G+iI , . ,+,  , . . . , GIrm, 

. . . , A,,} I Arm+1, 
{ 

I 

Let M E e"'". Then p a ( M )  is defined as 

PA (MI 
0 

[minAEA{F(A)ldet ( I  - M A )  = 0)I-l 

if there does not exist A E A such that 
det (I - M A )  = 0, 

otherwise. 
(2) 

Without loss of generality, we have taken M and each subblock of 
A to be square. 

11. COMPUTATIONAL COMPLEXITY OF p CALCULATION 

We first show that indefinite quadratic programming,is a special 
case of a p problem. Let z, p ,  bi, b ,  E R", A E Rnxn, and c E R. 
Define the quadratic programming problem 

(3) 

where A can be indefinite. In the following theorem, we cast the 
aforementioned problem as a p problem. 

Theorem 2.1 (Quadratic Programming Polynomially Reduces to a 
p Problem): Define 

0 0 kw 
M =  LA 0 L A 3  1, (4) 

(5 )  

[i'.ltpF wT -T z A z + p T Z + c  - 

A = {diag[b~,-- . ,SL, SY,.--,SL, Sc]16' E R; 6" E C}, 

This implies that the indefinite quadratic program (3) polynomially 
reduces to both a real p problem, and a mixed p problem. 

Proof: The proof is trivial for IC = 0, so assume k > 0. The idea 
is to treat the constraints as uncertainty and the objective function as 
the performance objective of a robust performance problem (see [4] 
for a description of the robust performance problem). The constraint 
set is 

{ z l b l  5 I 5 b , }  = { Z ~ I  = f +  Arw; 
A r  = diag[6;,...,6;]; 6,' E [-1, 11). (10) 

For convenience, define an artificial output y E R and an artificial 
input d E R. Then the quadratic programming problem can be 
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Fig. 1. Equivalent block diagram for quadratic programming problem. 

4 3  *.__._--_..._______.._ ..---..____.__.._______ 

Fig. 2. Quadratic programming as a robustness problem. 

written as the block diagram in Fig. I .  Block diagram manipulations 
give us the block diagram in Fig. 2, where we have augmented 
the block diagram with a performance block 6“. The optimization 
objective is the input-output relationship between d and y . Define 
A[- = diag[A‘, A.], N by 

and the linear fractional transformation (LFT) F , ( N ,  AI,) by 

F,,(s ,  A ~ )  = AL + & A ~ ( I  - N ~ ~ A ~ ) - ’ N ~ ~ .  (12) 

Since det (I - N l l  Ari) = 1, the inverse in (12) is well defined. We 
have 

Since   MI^) = 0 < k ,  we can apply the robust performance 
theorem of [4] to give (9). Since F,(M, Au) has no dynamics and 
is 1 x 1, the complex perturbation 5‘ can be replaced by a real 
perturbation. 

It can easily be shown that the p problem in (9) is described by less 
than four times the number of parameters of the quadratic program. 

Remark 2.2: Theorem 2.1 can be generalized to handle general 
linear constraints instead of the simple ones in (3). Any unbounded 
linear constraints can be converted through a bilinear transform to 
bounded linear constraints. All bounded linear constraints can be 
treated as uncertainty-the details are left to the reader. Unfor- 
tunately, for general linear constraints the resulting p problem is 
impractically large. Theorem 2.1 can also be modified to solve the 
optimization problem that does not have the absolute value in the 
objective. The idea is simple: the maximizing x does not depend on 
c, so choose c > 0 very large. Then solve the resulting “absolute 
value” p problem. The maximizing z for this problem will solve 

QED 

the original problem. Minimizations can be handled just as easily as 
maximizations-choose c < 0 very large in magnitude and solve the 
resulting “absolute value” p problem. We do not show the details 
of these generalizations here because the generality is not needed to 
prove the main results of this work. 

Remark 2.3: Any nonlinear programming problem with an LFT of 
x and xT as an objective and general linear constraints can be written 
as a block diagram like that of Fig. 1. The block diagram can always 
be rearranged to be in the form of Fig. 2, where y = F,(N,  A u ) ~ ,  
but with a different N and Au. This block diagram has an equivalent 
p problem. Therefore, any nonlinear programming problem, with an 
LFT of z and zT as an objective and general linear constraints can 
be cast as a p problem. It is not clear how to efficiently write a given 
nonlinear (e.g., polynomial) objective as an LIT in terms of z and zT 
except for the specific cases of linear and quadratic programming. But 
we have good methods for solving linear and quadratic (at least in the 
definite and semi-definite cases) programs-what might be interesting 
in terms of computation would be to solve optimizations with more 
difficult objective functions. The well-known lower and upper bounds 
(see [ I l l  for a summary) commonly used to approximate p are 
bounds on the maximum of the LlT programming objective. The 
2 that achieves the value of the lower bound can be calculated from 
the perturbation that achieves the lower bound from (7), (8 ) ,  and (IO). 
The error in the objective in using x from the lower bound algorithm 
instead of the optimal .r is no greater than the difference between the 
upper and lower bounds. 

To apply computational complexity theory, we must write the 
calculation of p as a recognition problem (a “yes or no” problem). 
Consider p with M E &“””, IC E &, and mixed realkomplex 
uncertainty blocks. Define the recognition problem CP: = “Is p 2 k?” 
= “Does there exist a perturbation of magnitude k-’ that destabilizes 
the system?” 

The next lemma is essentially from [6]. This work is important 
because it was the first to use the techniques of discrete combinatorial 
complexity theory to study the computational difficulty of continuous 
optimization problems. 

Consider d, E Q for i = 0 to n, and IC E &. Define the following 
nonconvex quadratic program: 

Lemma 2.4 (NP-Completeness of Indefinite Quadratic Program- 
ming): The recognition problem “Is q > k?’ is NP-complete. 

Proofi Murty and Kabadi [6] show that this problem is “-hard. 

The following theorem states that the p recognition problem is 

Theorem 2.5 (NP-Hardness of p Recognition): @ with general 
perturbation structure and general M is NP-hard. 

Proof: The indefinite program (14) can be written as (3) through 
multiplications and additions (- U (  n’) operations). This problem 
is NP-complete by Lemma 2.4, and the quadratic program (3) 
polynomially reduces to a p problem by Theorem 2.1. Thus @ is 
in general at least as difficult as indefinite quadratic programming, 

Though the general p recognition problem is NP-hard, special cases 
(Le., with restrictions on the structure or field of M or A) may be 
simpler to compute. For example, when the M matrix is restricted 
to be rank one, the calculation of p has sublinear growth in problem 
size, irrespective of the perturbation structure [ 11. 

The case where p has only real perturbations has received an 
especially large amount of attention in the p calculation literature. 
The next result states that p recognition is “-hard for this case. 

Vavasis [lo] shows that the problem is in N P .  QED 

NP-hard. 

and CP is NP-hard. QED 

1 
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meorem 2.6 (NP-Hardness of Real p Recognition): 9 is NP- 

Proof: Use the real p problem of Theorem 2.1 in the proof of 

Models for real systems always have unmodeled dynamics associ- 
ated with them. Unmodeled dynamics correspond to having at least 
one complex uncertainty which enters nontrivially in the p problem. 
The next result states that p recognition is NP-hard for this practically 
motivated class of problems. 

Theorem 2.7 (NP-Hanlness of Mixed p Recognition): Let A con- 
sist of both real and complex perturbations. Arrange the perturbations 
in A = diag(A1, A,} such that A1 consists of pure real perturba- 
tions and A2 consists of pure complex perturbations. Partition M 
compatibly, i.e., 

hard when M and the perturbations are restricted to be real. 

Theorem 2.5. QED 

where ~ A ( M ) ,  ~ A , ( M I I ) ,  and p ~ , ( M z z )  are well-defined. Con- 
sider the class of p problems for which , U A ~  (Ml1) < ~ A ( M ) .  @ is 
IW-hard for this class of problems. 

Proof: Use the mixed p problem of Theorem 2.1 in the proof 
of Theorem 2.5. QED 

The evaluation problem “What is p?” is at least as difficult to 
solve as the recognition problem “Is p 2 k?” since the solution of 
the recognition problem immediately follows from the solution to the 
evaluation problem. 

DI. COMPARISON WITH PREVIOUS RESULTS 

It can be shown from results of Rohn and Poljak and Demmel [9], 
[2] that the recognition problem for a special case of computing p 
with only real perturbations is NP-complete. This implies that the 
p recognition problems for both the pure real and general cases are 
NP-hard (Theorems 2.5 and 2.6). 

In this note, we use a control approach to studying the com- 
putational complexity of p.  The proofs use only simple linear 
algebra-the approach in [9], [2] involves transformation to the “max- 
cut problem.” Theorem 2.7, which shows that including complex 
perturbations (which appear to be better behaved numerically, see 
[Il l)  in the p problem does not remove the “-hardness, follows 
naturally from the approach taken in this note. This result is important 
since practically-motivated p problems are in this class. 

Another immediate result (follows from [7]) of this note is that p 
recognition remains NP-hard when the class of problems is restricted 
to those in which p is a continuous function of M. 

IV. CONCLUSION 
The main results strongly suggest that it is futile to pursue exact 

methods for calculating p of general systems with pure real or 
mixed uncertainty for other than small problems. In particular, one 
should not expect to find apolynomial time algorithm that calculates 
either real or mixed p with general M exactly. These results do not 
mean, however, that practical algorithms are not possible. Practical 
algorithms for other NP-hard problems exist and typically involve 
approximation, heuristics, branch-and-bound, or local search [5], [8]. 
The results of Young et al. [l  I] strongly suggest that a combination 
of these techniques which takes into account the structure of the p 
calculation problem can yield an algorithm which approximates p in 
polynomial time for typical problems. 
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On the General Solution of the 
State Deadbeat Control Problem 

Vasfi Eldem and Hasan Selbuz 

AbstmctAn this note, the state deadbeat control problem is considered. 
It is shown that, after appropriate change of basis of input and state 
spaces, the general solution of the state deadbeat control problem can 
be expressed completely by the rows of the powers of system matrix. 
This result yields a very simple procedure for the calculation of a state 
feedback deadbeat control gain. It also provides the number of free 
parameters which could be used for further design purposes. The results 
are illustrated by an example at the end of the note. 

I. INTRODUCTION 
The problem of constructing a constant state feedback control 

which derives any state to the origin in a minimum number of 
time steps is called the state deadbeat control problem. The interest 
in this problem goes back to early works of Kalman [I] on time- 
optimal control. Since then, the deadbeat control problem has been 
investigated by many researchers which has resulted in a rich variety 
of construction procedures. Ackerman [2], for instance, uses control- 
lable canonical form, whereas Mullis [3] and Leden [4] employ an 
appropriate selection procedure for choosing n linearly independent 
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