
1 

 

Robust Efficiency and Actuator Saturation Explain Healthy Heart Rate Control and Variability 

 

Authors: Na Li1, Jerry Cruz2, Chenghao Simon Chien3,4, Somayeh Sojoudi5, Ben Recht6, David Stone7, 

Marie Csete8, Daniel Bahmiller2, John C. Doyle2,3,9,* 

Affiliations: 

  1Laboratory of Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, 

MA 

2Department of Computing and Mathematical Science, California Institute of Technology, Pasadena, CA 

3Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 

4Advanced Algorithm Research Center, Philips Healthcare, Thousand Oaks, CA 

5Department of Neurology, NYU Comprehensive Epilepsy Center, NYU School of Medicine, New 

York, NY 

6Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 

7Departments of Anesthesiology and Neurosurgery and the Center for Wireless Health, University of 

Virginia School of Medicine, Charlottesville, VA 

8Huntington Medical Research Institutes, Pasadena, CA 

9Department of BioEngineering, California Institute of Technology, Pasadena, CA 

* To whom correspondence should be addressed. E-mail: doyle@caltech.edu  

Key words: 

Heart rate variability, robust efficiency, actuator saturation, system identification, optimal control 

 

 

 

 

 



2 

 

Significance Statements 

Reduction in human heart rate variability (HRV) is recognized in both clinical and athletic domains as a 

marker for stress or disease, but previous mathematical and clinical analyses have not fully explained the 

physiological mechanisms of the variability.  Our analysis of HRV employing the tools of control 

mathematics reveals that the occurrence and magnitude of observed HRV is an inevitable outcome of a 

controlled system with known physiological constraints. In addition to a deeper understanding of 

physiology, control analysis may lead to the development of timelier monitors that detect control system 

dysfunction, and more informative monitors that can associate HRV with specific underlying 

physiological causes. 

 

Abstract: 

The correlation of healthy states with heart rate variability (HRV) using time series analyses is well 

documented.   While these studies note the accepted proximal role of autonomic nervous system (ANS) 

balance in HRV patterns, the responsible deeper physiological (and clinically relevant) mechanisms 

have not been fully explained.  Using mathematical tools from control theory, we combine mechanistic 

models of basic physiology with experimental data from human subjects to explain causal relationships 

among states of stress vs. health, HR control, and HRV, and more importantly, the physiologic 

requirements and constraints underlying these relationships.  Nonlinear dynamics play an important 

explanatory role- most fundamentally in the actuator saturations arising from unavoidable tradeoffs in 

robust homeostasis and metabolic efficiency.  While mathematical models and tools are essential for our 

results and for optimal clinical interpretation of HR data, we also provide simple and intuitive 

physiological explanations for HR control and HRV. All these results are grounded in domain-specific 

mechanisms, tradeoffs, and constraints, but they also illustrate important, universal properties of 

complex systems. We show that the study of complex biological phenomena like HRV requires a 

framework which facilitates inclusion of diverse domain specifics (e.g. due to physiology, evolution, 

and measurement technology) in addition to general theories of efficiency, robustness, feedback, 

dynamics, and supporting mathematical tools.  
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Introduction 

Biological systems display a variety of well known rhythms in physiological signals [1-6], with 

particular patterns of variability associated with a healthy state [2-6]. Decades of research demonstrates 

that heart rate (HR) in healthy humans has high variability, and loss of this high HR variability (HRV) is 

correlated with adverse states such as stress, fatigue, physiologic senescence, or disease [6-12]. The 

dominant approach to analysis of HRV has been to focus on statistics and patterns in HR time series that 

have been interpreted as fractal, chaotic, scale-free, critical, etc. [6-15].  The appeal of time series 

analysis is understandable as it puts HRV in the context of a broad and popular approach to complex 

systems [16], and claims connection of HRV to clinically relevant outcomes [5], all while requiring 

minimal attention to domain-specific (e.g. physiological) details. Yet despite intense research activity in 

this area, there is limited consensus regarding causation or mechanism and minimal clinical application 

of the observed phenomena [10].  

Increasingly, multidisciplinary experts who are otherwise enthusiastic about the broader 

applicability of chaos and fractals question their relevance to HRV [17], and question even the most 

basic claims regarding correlations with health and disease [18]. This trend is consistent with a broader 

critique on the lack of statistical and methodological rigor on complex systems in science and medicine 

generally [19-22]. This paper takes a completely different approach, aiming for more fundamental rigor 

and potential clinical relevance. We offer simple physiological explanations for the largest source of 

HRV and its changes, as well as methods that help systematically pursue such explanations.   

Fig. 1 shows the type of HR data analyzed, collected from healthy young athletes (n=5). The 

data display responses to changes in muscle work rate on a stationary bicycle during mostly aerobic 

exercise. Fig. 1A shows 3 separate exercise sessions with identical watts fluctuations about 3 different 

means.  With proper sleep, hydration, nutrition, and prevention from overheating, trained athletes can 

maintain the highest workload in Fig. 1 for hours and the lower and middle levels almost indefinitely.  

This ability requires robust efficiency: high workloads are sustained while robustly maintaining 

metabolic homeostasis, a particularly challenging goal in the case of the relatively large, metabolically 

demanding, and fragile human brain.   

While mean HR in Fig. 1A increases monotonically with workloads, both slow and fast 

fluctuations (i.e. HRV) in HR are saturating nonlinear functions of workloads, meaning that both high 

and low frequency HRV component goes down. Results from all subjects showed qualitatively similar 

nonlinearities (see SI). We will argue that this saturating nonlinearity is the simplest and most 
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fundamental example of change in HRV in response to stressors [11, 12, 23] (exercise in the 

experimental case, but in general also fatigue, dehydration, trauma, infection, even fear and anxiety [6-9, 

11, 12, 23]).  

Physiologists have correlated HRV and autonomic tone [7, 11-13], and the (im)balance between 

sympathetic stimulation and parasympathetic withdrawal [12, 24-26]. The alternation in autonomic 

control of HR (more sympathetic and less parasympathetic tone during exercise) serves as an obvious 

proximate cause for how the HRV changes as shown in Fig. 1, but the ultimate question remains as to 

why the system is implemented this way.  It could be an evolutionary accident, or could follow from 

hard physiologic tradeoff requirements on cardiovascular control, as work in other systems suggests [1]. 

Here, the explanation of HRV similarly involves hard physiological tradeoffs in robust efficiency and 

employs the mathematical tools necessary to make this explanation rigorous in the context of large 

measurement and modeling uncertainties. 

Physiological tradeoffs 

The central physiological tradeoffs in cardiovascular control [25-30], shown schematically in Fig. 

2, involve interconnected organ systems and four types of signals that are very different in both 

functional role and time series behavior, but together define the requirements for robust efficiency of the 

cardiorespiratory system. The main control requirement is to maintain 1) small, acceptable “errors” in 

internal variables for brain homeostasis (e.g., cerebral blood flow CBF, arterial O2 saturation SaO2) and 

efficient working muscle O2 utilization (∆O2 ) using 2) actuators (heart rate H, minute ventilation EV , 

vasodilation and systemic peripheral (vascular) resistance (Rs) and brain autoregulation) in response to 3)  

external disturbances (workload W), and 4) internal sensor noise and perturbations (e.g. pressure 

changes from different respiratory patterns due to pulsatile ventilation V).  

In healthy fit subjects, keeping errors in CBF, SaO2 , and  ∆O2  suitably small while responding 

to large, fast variations in W disturbance necessitates compensating and coordinated changes in actuation 

via responses in H, EV , Rs, and  cerebral autoregulation.  Thus healthy response involves low error but 

high control variability whereas loss of health is exactly the opposite.  We will show that the observed 

striking changes in HRV such as those seen in Fig. 1 result from tradeoffs between these errors 

combined with various actuator saturations.   

 A challenge to this approach lies in managing the necessary but potentially bewildering 

complexity inherent in the physiological details, mathematical methods, and measurement technology. 

To achieve this, we make each small step in the analysis as simple, accessible, and reproducible as 
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possible from analysis of experimental data to modeling to physiological and control theoretic 

interpretation.  In addition, we restrict the physiology (shown schematically in Fig. 2) [25-30] and 

control theory [30-33] to basic levels and all software is standard and open source. We also make several 

passes through the analysis and modeling with increasing complexity, sophistication, and depth, to aid 

intuition while highlighting the need for rigorous, scalable methods.   

In addition to mechanistic physiological models, we also use systems identification techniques 

(referred to as black-box fits in this paper) [23, 31, 34, 35] as intermediate steps to identify parsimonious 

canonical dynamical input-output models relating HR as an output variable to input disturbances such as 

workload and ventilation. These techniques establish causal deterministic links between input and output 

variables; highlight the aspects of time series and dynamic relationships that are explored further; and 

give some indication of the degree of complexity of their dynamics. Then, we use physiologically 

motivated models (referred to as first-principle models in this paper) [27-30] to study the mechanisms 

that drive the dynamics. The two approaches are complementary:  Black-box fits highlight essential 

relationships that may be hard to intuit from data alone and can be obscured in both complex data sets 

and mechanistic models, while first-principles models give physiological interpretations to these 

dynamical relationships.     

Results 

Static Fits 

Table 1 lists the minimum root mean square (RMS) error ||H_data-H_fit|| (where 

 for a time series xt of length N) for several static and dynamic fits of increasing 

complexity for the data in Fig. 1. Not surprisingly, Table 1 shows that the RMS error becomes roughly 

smaller with increased fit complexity (in terms of the number of parameters).  Rows 2 and 5 of Table 1 

(in blue) are single global linear fits for all the data, while the remaining rows (in white) have different 

parameters for each cell and are thus piecewise linear when applied to all the data.  The “best” piecewise 

linear models balancing error with complexity are further highlighted in yellow in Table 1. 

We will initially focus on static linear fits (first 4 rows) of the form h(W)=b·W+c, where b and c 

are constants  that minimize the RMS error ||H_data-h(W)||, which can be found easily by linear least 

squares. Static models have limited explanatory power but are simple starting points in which 

constraints and tradeoffs can be easily identified and understood, and we use only methods that directly 

generalize to dynamic models (showed later) with modest increase in complexity.  Row 1 of Table 1 is 

( )2

1
/N

tt
x x N

=∑
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the trivial “zero” fit with b=c=0; Row 2 is the best global linear fit with (b,c)=( 0.35,53) which is used 

to linearly scale the units of W (blue) to best fit the HR data (red) in Fig. 1A; Row 3 is a piecewise 

constant fit with b=0 and c being the mean of each data set; Row 4 is the best piecewise linear fits 

(black dashed lines in Fig. 1A)  with quite different values (b,c) of (0.44,49), (0.14,82) and (0.04,137) at 

0-50, 100-150, and 250-300 watts. The piecewise linear model has less error than the global linear fit. At 

high workload level, HR in Fig. 1 does not reach steady state on the time scale of the experiments, the 

linear static fit is little better than constant fit, and so these data are not considered further for static fits 

and models. 

Both Table 1 and Fig. 1 imply that HR responds somewhat nonlinearly to different levels of 

workload stressors.  The solid black curve in Fig. 3A shows idealized (i.e. piecewise linear) and 

qualitative but typical values for h(W) globally that are consistent with the static piecewise linear fits at 

the two lower watts levels in Fig. 1A. The change in slope of H=h(W) with increasing workload is the 

simplest manifestation of changing HRV and is now our initial focus.  A proximate cause is autonomic 

nervous system (ANS) balance, but we are looking for a deeper why in terms of whole system 

constraints and tradeoffs.   

Static Models 

As we mentioned earlier, in healthy fit subjects, the central physiological tradeoffs in 

cardiovascular control requires keeping errors such as CBF, SaO2, and ∆O2 suitably small in response to 

variations in W disturbance through changes in actuations such as H. To better understand the tradeoff, 

we derive a steady state model (Pas, ∆O2) = f (H, W) from standard physiology that constrains the 

relationship between (Pas, ∆O2) and (H, W) independent of how H is controlled (details below). Here Pas 

is mean systemic arterial blood pressure (MAP), which is an important variable affecting the CBF [26, 

36] and ∆O2 is the drop in oxygen content across working muscle (Notice that the model already 

assumes constant SaO2, which is consistent with data measurement and literature [25].). The mesh plot in 

Fig. 3C is the image on the (Pas, ∆O2) plane of the Fig. 3B (H, W) mesh plot under this function f(H,W) 

for generic, plausible values of physiological parameters.  Thus any function H=h(W), can be mapped 

from the (H, W) plane using model (Pas, ∆O2) = f (H, W) to the (Pas, ∆O2) plane to determine its 

consequences for the most important tradeoffs, which involve Pas and ∆O2.  These results are shown 

with the black lines in Fig. 3B, that give H=h(W) curves consistent with Fig. 3A and then are mapped 

onto Fig. 3C. 
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Hidden complexity is unavoidable in the model (Pas, ∆O2) = f (H, W), but we temporarily defer 

these details to focus on the general shape of the color-coded curves in Fig. 3B-C, which have an 

intuitively clear explanation highlighted by the dashed red and purple lines. At constant workload, 

increased HR would greatly increase Pas while slightly decreasing ∆O2 due to greater flow rate through 

the muscle. For constant HR, increased workload would greatly increase ∆O2 while slightly reducing Pas 

due to greater oxygenation and peripheral vasodilatation. The cardiovascular control system adjusts HR 

as a function H=h(W) of workload to trade off increasing Pas with increasing ∆O2, both of which are 

undesirable. This tradeoff in robust efficiency and how it changes at different HR levels are the essential 

sources of the nonlinearities in the solid black lines in Fig. 3, with relatively small nonlinearity in the 

function (Pas, ∆O2) = f (H, W) manifested in modest curvature of the colored meshes in Fig. 3C.  

The hypothetical linear response at low workload in Fig. 3 can be explained in terms of purely 

metabolic tradeoffs. Healthy athletes can maintain the low workload almost indefinitely even in adverse 

(e.g. heat) conditions, a feature of human physiology thought to be an important adaptation for a 

successful hunter [37]. Prolonged exercise necessarily requires steeply increased HR to provide 

sufficient tissue O2 (low ∆O2), to maintain aerobic lipid metabolism in muscles and preserve precious 

carbohydrates for the brain.   

The nonlinear response in Fig. 3 (solid lines) reflects additional tradeoffs that arise at higher 

workload and HR, when the resulting high Pas becomes dangerous mainly due to actuator saturation of 

cerebral autoregulatory control.  In healthy humans, CBF is autoregulated to be quite constant [26, 36] 

over a relatively wide range of Pas (50 < Pas < 150 mm Hg),  so that no new tradeoffs at moderate 

exercise levels are required, because Pas is within this range.  A new tradeoff does arise at Pas above 150 

mm Hg when cerebral autoregulation saturates, and CBF begins to rise with the severe possible  

consequences of edema and/or hemorrhage.. Thus for the dashed black linear response in Fig. 3B-C, the 

resulting Pas would be elevated to potentially pathologic levels, and some nonlinearity as in the solid 

black line is necessary. Moreover, in many subjects there may  be diminishing metabolic benefit of high 

tissue O2 (low ∆O2) at high workloads because muscle mitochondria saturate.   While many details of 

cerebral autoregulation (as well as the mitochondrial saturation)  are poorly understood , the Pas at which 

autoregulation saturates is well-known in healthy adults, and helps to explain an important change in 

HRV with stressors. Ultimately, cardiac output itself saturates at sufficiently high HR due to 

compromised diastolic filling time with subsequent dramatic falls in stroke volume.   
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Mathematically, all these factors can be quantitatively reflected in a static optimization model 

using linear least squares,  with H=h(W) chosen to minimize a weighted penalty on increasing Pas, ∆O2 

and H:  

( ) ( ) ( )2

2 2 22 * 2 * 2 *
2 2min  P as as o Hq P P q O O q H H− + ∆ −∆ + −  

subject to linearization of the constraint (Pas, ∆O2) = f (H, W) at 0 and 100 watts. Here * * *
2, ,asP O H∆ are 

the steady values for 2, ,asP O H∆   at 0 and 100 watts respectively. Different values for 
 

reflect different tradeoffs between Pas, ∆O2, and H at different workloads.  In particular,  is higher at 

high watts and high HR, reflecting the greater impact of Pas on CBF due to saturation of autoregulation, 

and is higher to reflect the saturation of HR itself, which becomes more acute at higher watts levels.  

Straightforward, standard computations easily reproduce the piecewise linear features in Fig. 3 with 

higher penalty on Pas and H at higher workload levels.  

An important feature of this approach is that it allows systematic exploration of models that are 

both simple and explanatory.  We have systematically moved from the data in Fig. 1 to the fit in Fig. 3A, 

and then from very simple well understood physiological mechanisms to how healthy HR should behave 

and be controlled, reflected in Fig 3B-C. The nonlinear behavior of HR is explained by combining 

explicit constraints in the form (Pas, ∆O2) = f (H, W) due to well-understood physiology with constraints 

on homeostatic tradeoffs between rising Pas and ∆O2 that change as W increases.  The physiologic 

tradeoffs depicted in these models explain why a healthy neuroendocrine system would necessarily 

produce changes in HRV with stress, no matter how the remaining details are implemented.  Taken 

together this could be called a “grey box” model since it combines hard physiological constraints both in 

(Pas, ∆O2) = f (H, W) and homeostatic tradeoffs to derive a resulting H=h(W).  If new tradeoffs not 

considered here are found to be significant, they can be added directly to the model as additional 

constraints, and solutions recomputed.  The ability to include such physiological constraints and 

tradeoffs is far more essential to our approach than what is specifically modeled (e.g. that primarily 

metabolic tradeoffs at low HR shift priority to limiting Pas as cerebral autoregulation saturates at higher 

HR). This extensibility of the methodology will be emphasized throughout. 

The most obvious limit in using static models is that they assume HR responds instantaneously 

to workloads, so important transient dynamics in HR are ignored, missing what is arguably the most 

striking manifestations of changing HRV seen in Fig. 1.  Fortunately, our method combining data fitting, 

( )2
, ,P O Hq q q

Pq

Hq
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first principles modeling, and constrained optimization readily extends beyond static models. The 

tradeoffs in robust efficiency in Pas and ∆O2 that explain changes in HRV at different workloads also 

extend directly to the dynamic case as domenstrated later. 

Dynamic Fits  

In this section we extract more dynamic information from the exercise data. The fluctuating 

perturbations in workload (Fig. 1) imposed on a constant background (stress) are targeted to expose 

essential dynamics, first captured with “black-box” input/output dynamic versions of above static fits. 

Fig. 1B shows the simulated output h(t) = HR (in black) of simple local (piecewise) linear dynamics 

(with discrete time t in seconds)  

 ( ) ( 1) ( ) ( ) ( )h t h t h t a ht b W t c∆ = + − = + +                 (1)   

where the input is W(t)  = workload (blue).  Constants (a, b, c) are fit to minimize the RMS error 

between h(t) and HR data as before (Table 1). The optimal parameter values (a, b, c)≈ (-0.22, 0.11, 10) 

at 0 watts differ greatly from those at 100 watts (-0.06, 0.012, 4.6) and at 250 watts (-0.003, 0.003, -

0.27), so a single model equally fitting all workload levels is necessarily nonlinear. This conclusion is 

confirmed by simulating HR (blue in Fig. 1B) with one best global linear fit (a, b, c)≈ (0.06,0.02,2.93) 

to all three exercises, which has large errors at high and low workload levels.  

The changes of the large, slow fluctuations in both HR (red) and its simulation (black) in Fig. 1B 

are consistent with well-understood cardiovascular physiology, and illustrate how the physiologic 

system has evolved to maintain homeostasis despite stresses, here those due to workloads. Our next step 

in modeling is to mechanistically explain as much of the HRV changes in Fig. 1 as possible using only 

standard models of aerobic cardiovascular physiology and control [25-29].   This step focuses on the 

changes in HRV in the fits in Fig. 1B (in black) and equation (1) and we defer modeling of the high 

frequency variability in Fig. 1until later (i.e., the differences between the red data and black simulations 

in Fig. 1B).   

The black box fits allow us to plausibly conjecture that workload disturbances cause most of the 

variability in Fig. 1-B (black curves). Here the rigor of the black-box fits is important, as highlighted by 

three features: 1) no comparably good fits exist for the data in Fig. 1 without the input of workload, 2) 

within the limits of the sensors used and subject fitness we can otherwise experimentally manipulate the 

input independently and over a wide range to make it truly a “causal” input, and 3) the fits accurately 

predict the HR output response to new experiments (i.e. cross-validation, see SI).  

First Principles Models  
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Our first principle model is based on the circulatory circuit diagram in Fig. 2, using standard 

mathematical descriptions of circulation, and with a focus on modeling purely aerobic exercise. That is, 

we only model blood flow, blood pressure, and O2 in several compartments, and yet the model captures 

the overall physiologic HR response during moderate exercise in young, fit adults. In standard models of 

aerobic cardiovascular control [25-29] the neuroendocrine system controls peripheral vasodilation, 

minute ventilation, and cardiac output to maintain blood pressure and oxygen saturation within 

acceptable physiological limits.   

Several features of these control systems allow substantial simplification of the model. Minute 

ventilation EV  alone can tightly control arterial oxygenation [O2]a , so we assume  [O2]a is maintained 

nearly constant (consistent with the nearly constant oxygen saturation SaO2 throughout all the exercise 

[25]). Moreover, peripheral resistance Rs is decreased during exercise and the decrease is determined by 

local metabolic control. The purpose of decreasing Rs in the arterioles is to increase blood flow and 

regional delivery of O2, glucose, and other substrates as needed. Since the venous oxygenation [O2]v  

serves as a good signal for oxygen consumption, we also assume that control of peripheral vascular 

resistance Rs is a function only of venous oxygenation [O2]v [29].  

Combined with those models for blood circulation and oxygen consumption, we have the 

following physiological model: 

 

0
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⋅ ⋅

= ⋅

−
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Here V and P are (subscripts a=arterial, v=venous, s=systemic, p=pulmonary) blood volume and blood 

pressure respectively.  All of the c variables are constants.  The main elements of the model are (more 

details in SI): (i) arterial and venous compartments of systemic and pulmonary circulations are treated as 

compliant vessels, modeled in the form V=c·P, with the total blood volume a constant Vtot; (ii) cardiac 

output of the left (Ql) and right (Qr) ventricles; (iii) blood flow for systemic (Fs) and pulmonary (Fp)  

circulation; (iv) the metabolic consumption M; (v) [O2]a and Rs  are modeled according to the previous 

description about the control mechanism. Note that we need not model these control systems in detail, 

but simply extract their most well-known features and use them to constrain the model.   
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In steady state the follow additional constraints hold: 

 
2 2([ ] [ ] )

r l s p

s a v

Q Q F F
M F O O

= = =

= −
 (3) 

The first equation is total blood circulation balance and the second one is based on the oxygen 

circulation balance, where Fs([O2]a-[O2]v) is the net change in the arterial and venous blood O2 content. 

The oxygen drop ∆O2 across the muscle bed is defined as ∆ O2=[O2]a-[O2]v. Combining (2) and (3) plus 

simple algebra (see SI) gives the steady state model (Pas, ∆O2) = f (H, W) shown in Fig. 3 that constrains 

the relationship between (Pas, ∆O2) and (H, W).   

           In general the circulatory system is far from steady state in our experiments. Modeling the blood 

volume change for each circulatory compartment and the oxygen change in the tissue keeps the 

constraints from equation (2) but replaces (3) with the following dynamic model: 
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 (4) 

Here 
2,T Ov denotes the effective tissue O2 volume and we assume that tissues and venous blood gases are 

in equilibrium, namely that tissue oxygenation 2[ ]TO  is the same as venous oxygenation 2[ ]vO (see SI). 

The previous static analysis (and the purely static tradeoffs it highlights) directly extends to the dynamic 

case with modestly increased complexity.  The simplest extension is to use an optimal linear quadratic 

(LQ) state feedback controller [32] for linearizations of  (4) at 0 and 100 watts, with controller  

chosen to minimize a weighted penalty on integrated elevation of Pas, ∆O2 and H: 

( ) ( ) ( )2

2 2 22 * 2 * 2 *
2 2min  P as as o Hq P P q O O q H H dt − + ∆ − ∆ + − 

 ∫  

subject to linearizations of the state dynamic constraint (4). Fig. 4 compares HR and workload data 

versus simulations of such linear controllers (but using the nonlinear model) for two experiments 

(similar to Fig. 1 but with a different subject) with higher penalty on Pas and H at higher workloads as in 

the static case. (See SI for more details.) Also shown are simulations of Pas and [O2]T , which are 

consistent with the literature but were not measured. The same methods and results apply to other 

subjects’ data and new experiments (e.g. cross-validation, see SI). 

( )H u= ⋅
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The change in the tradeoff as workload increases is consistent with what we observed using the 

static model. At low workload and low HR, the main tradeoff is metabolic since both Pas and HR are at 

safe and sustainable levels.  High HR and thus high [O2]T, (low ∆O2), maintains aerobic muscle 

metabolism, extending the potential duration of exercise while preserving carbohydrate resources for the 

brain.  At higher workloads, this strategy would produce unsustainably high and potentially damaging 

Pas and possibly HR, so the optimal controller penalizes these factors more, at the price of reduced [O2]T.  

HRV (slow time scale) in Fig. 1 (and Pas in Fig. 4) decreases with increasing workload because of these 

straightforward but changing tradeoffs between metabolic overhead and Pas, ∆O2, and H as their means 

increase.  Thus the explanations in HRV derived from the dynamic aerobic model are richer and more 

complete but due to the same tradeoffs as in the simpler static model.  

Importantly, though the mathematics and physiology required are relatively elementary and the 

resulting explanation is intuitively clear and mechanistic, they nonetheless highlight the rigor and 

scalability of this approach.  The simplicity of the “black box” fits in (1) and Fig. 1 helps establish 

causal relationships between variables and suggests physiological mechanisms to model in more detail, 

and highlights features in the signals that are not modeled (i.e., we have not explained the high 

frequency of the signals at low watts in Fig. 1, considered in the next sections). The hard homeostatic 

tradeoffs and the actuator effects of HR, ventilation, and vasodilation were included in the physiology 

model in (2)-(4) but the neuroendocrine implementation details were not.  Also, the impact of cerebral 

autoregulatory saturation was included, but the details of implementation were not.  Nonetheless, this 

approach allows for clinically actionable explanations that do not depend on poorly understood 

mechanisms peripheral to the component being modeled, and provides a framework for systematically 

refining such models using a similar (but presumably vastly more complex) combination of black and 

grey box models and physiology.  Again, if new tradeoffs not considered here are found to be significant, 

they can be added directly as additional constraints are recognized and solutions recomputed.  (Further, 

tradeoffs may well change as organ systems fail, when these models are extended to disease states.) 

High Frequency HRV   

The  high frequency fluctuations in HR that are particularly large at low mean workloads and 

low HR cannot be explained by the simple fits or models above, and thus additional signals and 

mechanisms must be included that can be causally related to this setting.  Figs. 5-6 shed light on 

breathing as a cause of much of the high frequency HRV. Fig. 5A shows HR (red) during natural 

breathing at rest, with the optimal static fit h(V)=b·V+c  where V (blue) is measured ventilation flow 
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rates (inhalation and exhalation) at the mouthpiece. The static linear fit can be used to scale the units of 

V (blue) in Fig. 5A to visualize the best fit to HR (red) and its error, shown in Table 2.  That HR and 

ventilation match so well in frequency (if not magnitude) is consistent with the observation that under 

certain conditions, inspiration is accompanied by an acceleration of heart rate, and expiration by a 

deceleration, a phenomenon called respiratory sinus arrhythmia (RSA) [38-45].  However, because 

ventilation and HR are both generated by neuroendocrine control, this fit (i.e. correlation) by itself does 

not suggest a specific mechanistic explanation of the resulting HR-ventilation correlation or HRV.  

To sharpen this picture, Fig. 6 shows data from subjects instructed to control respiratory rate (RR, 

shown in blue) by following a computer generated RR frequency sweep (tidal volumes not controlled), 

repeated with a background  of 0 watt and 50 watts exercises respectively.  (Fig. 5B shows HR and 

zoomed in for the 0 watt exercise data.)  For each exercise taken separately, HR is fit with static (blue in 

Fig. 5B) and 1-state models, as well as a 2-state, 5-parameter linear model (shown in black in Figs. 5B, 

6, Table 2) 
   

1 1

2 2

( ) ( ) ( ) ( )
( ) ( ) ( )

h t a h t bV t x t
x t a x t b V t c

∆ = + +
∆ = + +

 (5) 

where V is ventilatory flow rates, x is an internal “black box” state, and the parameters depend on 

workload.  While breathing cannot be varied as systematically and widely as workload, these black-box 

fits provide strong evidence that ventilation is the main factor causing high frequency HRV.  The 

underlying physiological mechanisms remain unclear, but we now know where to look next. In Fig. 6, 

minute ventilation naturally increases at 50 watts, yet HRV goes down, a nonlinear pattern consistent 

with the trends in Figs. 1, 3, but more dramatic. As Table 2 shows, dynamic fits have little benefit for 

natural breathing at rest, but modestly reduce the error for the controlled respiratory sweeps at low and 

high frequency breathing.  In all cases, HR frequency is fit better than the magnitude of the HR 

oscillations, suggesting both a dynamic and nonlinear dependence of HR on ventilatory flow rates.   

Though RSA magnitude has been used as a measure of vagal function, after many years of 

research, the mechanism of RSA, e.g. whether RSA is due to a central or a baroreflex mechanism, is still 

debated [38-45]. Moreover, the data and dynamic fits show a small resonant peak in the frequency 

response at around 0.1 Hz at 0 watts, and the significance of the peak is unclear. Of note, this 

characteristic peak occurred in the fits for every subject (though the exact RR at which it occurs varied), 
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and is consistent with observations in the literature [38, 39].  (In SI, we also use both workload and 

ventilation data as inputs to fit HR data during the easy workout in the Fig. 1.)  

Resolution of these mysteries requires additional measurements such as arterial blood pressure 

(more invasive human studies), more sophisticated physiological modeling including the mechanical 

effects of breathing on arterial blood pressure and pulmonary stretch reflexes, plus changing tradeoffs in 

control of arterial blood pressure at different watts and HR levels. In particular, Model (5) above 

assumed continuous ventilation and heart rates (i.e. no intra-breath or -beat dynamics), so more detailed 

modeling of physiological respiratory patterns and their mechanical and metabolic effects is needed.  

Discussion:  

Robust efficiency and actuator saturation 

We showed how heart rate fluctuations in healthy athletes can be largely explained as nonlinear 

dynamic, but not chaotic, responses to either external (e.g. workload) or internal (e.g. ventilation 

implemented by pulsatile breathing) disturbance.  We provided mechanistic explanations and plausible 

conjectures for essentially all the HRV in Fig. 1, and showed that changes in HRV per se, no matter how 

measured, are much less important mechanistically than the tradeoffs that produce them. The tradeoffs 

we highlight between robustness, homeostasis, and metabolic efficiency are universal and essential [1, 

22] features of complex systems but can remain hidden and cryptic [46] without an appropriate 

mathematical framework [4, 47].  “Universal” features illustrated by this physiological (HR) control 

system include how efficiently maintaining robust homeostasis (e.g. small errors in CBF, SaO2 , and ∆O2) 

in the presence of large disturbances requires correspondingly large actuator (e.g. HR, ventilation, and 

cerebral autoregulation) responses to compensate, and how nonlinearities in actuator saturations lead to 

reductions in actuator activity (e.g. HRV) under increased load or stress.  

HR control and HRV highlight layered control, actuator constraints, and hard tradeoffs of the 

type that pervade physiology and are generally fundamental in complex control systems.  In summary, 

actuators are the mechanisms by which controllers act on the system to provide efficient performance 

and robust homeostasis.  In the cardiovascular models so far, the most important saturation is in cerebral 

autoregulation, which forces a nonlinear change in H=h(W) as workload increases in order to avoid high 

Pas that leads to intracerebral pathology (edema, hemorrhagic stroke).   

Further understanding of control complexity and the role of actuator (e.g. heart rate) variability 

and saturation in physiologic control comes from examination of other technological examples of 

complex systems. Familiar examples include automobiles, particularly new autonomous robotic versions.  
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A car is moved and controlled via the actuators that produce and deliver power, braking, and steering 

that result in accelerations in forward, backward, and lateral directions.  Most complexity in an 

autonomous robot car is in the control system needed for robust efficiency to uncertainty in real traffic 

environments and to intrinsic variability in components. If scientists were forced to “reverse engineer” 

such a car without access to the forward engineering process, they would likely study “knockouts” of 

components to infer their function, and also push the vehicles to extremes to find the limits of their 

robust performance.  It would be surprising if “reverse engineering” cardiovascular control would be 

easier than a robot car, or could be accomplished with less sophisticated tools and without domain 

specific details.  

Loss of car actuator variability due to ‘stress’ parallels loss of HRV, in that it is loss of actuator 

responsiveness that causes deterioration of function, and loss of variability is only a symptom of actuator 

dysfunction.  Currently, human drivers cause most crashes when they reduce their actuator 

responsiveness because of multitasking, alcohol consumption, fatigue, or poor visibility, or when surface 

conditions make the actuators less effective.  Automatic collision avoidance and anti-lock and anti-slip 

traction control systems mitigate these effects, and augment human control in emergencies.  But even in 

fully automated robotic cars with robust control systems, at extremes of speed, acceleration, braking, 

and turning (such as a race scenario or in icy conditions), actuators would frequently saturate and lose 

variability, resulting in less maneuverability, and an increase in errors and risk of crashes.   Malfunctions 

in sensing or computing could also lead to loss of actuator responsiveness and thus loss of variability.  

Thus actuator saturation causing changes in variability is a “signature” of a wide variety of dangerous 

scenarios, and essential to understanding vehicle limits and malfunction.  However, variability per se is 

unimportant, and analyzing the statistics of individual signals (e.g. fuel or air rates, braking, acceleration, 

turning rate, etc) in isolation is relatively less diagnostic compared to understanding integrated, 

mechanistic dynamic models of signal interactions. 

Similar tradeoffs to those resulting in HRV are found throughout technology and biology.  For 

example glycolytic oscillations were one of the most persistent mysteries involving dynamics in cell 

biology [1].  The proximal role of how autocatalytic and regulatory feedbacks make oscillations possible 

was well understood, but the unresolved deeper “why” question was the purpose of the oscillations, or 

alternatively, whether they were just frozen accidents of evolution.  Oscillations are neither functional 

nor accidental but are a side effect of provably hard tradeoffs involving efficiency and robust control [1].  

The glycolysis circuit must maintain adequate ATP concentrations that are robust to fluctuations in 
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demand and to enzyme and other metabolite levels.  It must also be metabolically efficient, in the sense 

of not requiring excessive enzyme concentrations.  Any circuit that aims to balance these competing 

requirements has the potential to oscillate, particularly when enzymes saturate.   

Mathematical framework 

It has been difficult to characterize multi-layered aspects of biological control, but our approach 

is aimed at providing tools for biologists and clinicians, combining established principles of system 

identification fits and control theory with basic physiological models. The fits in Figs. 1, 5-7 highlight 

causal input-output relationships between variables and help suggest the relevant physiology.  By 

comparison, even the most sophisticated statistical analysis of individual HR signals taken out of 

physiologic context is mechanistically uninformative.  In contrast, the static and dynamic models 

mechanistically explain Figs. 3, 4 and most of the variability in Fig. 1 (i.e. the black curves at the lower 

two watts).  Our explanation in terms of aerobic metabolism is simple and intuitive as well as 

mechanistic, and requires only basic mathematics and physiology.  The main requirement of the models 

is some mechanistic relationship between control actuation and its limits in maintaining robust 

homeostasis.  Thus we did not need detailed understanding of neuroendocrine control implementation or 

peripheral autoregulation, but only that they adequately manage the tradeoffs and saturation effects in 

muscle, brain, and heart as described above.  Moreover, specific details of the computational approach, 

e.g. piecewise linear least squares used in this paper, are  not essential to understanding the underlying 

system control.  What is important is that the right constraints are properly reflected in the computation, 

so that the resulting controller function is constrained by the right physiological mechanisms plus 

appropriately changing penalties/constraints on vital physiological variables due to metabolic tradeoffs 

and limit.  

Our approach also importantly highlights where mechanisms are missing.  The model in (2,4) 

and Fig. 4 does not capture any of the higher frequency HRV at low watts or the slow dynamics of 

anaerobic metabolism at high watts in Fig. 1.  But taken together, the fits in Figs. 5-7 suggest that 

dynamics of the mechanics of breathing and the chemistry of anaerobic muscle metabolism are 

necessary and perhaps sufficient to explain the rest of the HRV seen in Fig. 1. Model (2,4) assumed 

aerobic metabolism and continuous ventilation and heart rates (i.e. no intra-breath or -beat dynamics), so 

more detailed modeling of physiological respiratory patterns and their mechanical and metabolic effects 

is needed, as well as anaerobic metabolism at high workloads.  There may also be connections between 
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robust efficiency and oscillations as in [1] to explain the origin of the peaks in frequency response of the 

breath-to-HR fits.  

An essential feature of this project is that our tools be robust and scalable to more complex 

signals and models, and that if new mechanisms and/or tradeoffs are discovered that are important, they 

can be added as additional constraints. This aspect of modeling has been increasingly emphasized [47].  

Fortunately, we can leverage enormous recent advances in engineering theory and practice, although 

these remain largely unknown in mainstream science outside of the most advanced parts of systems 

biology. The general models and methods, particularly moving from (1) to (2,3,4) (and Fig. 1 to Figs. 3-

4), used for this relatively straightforward study should serve well as a foundational framework for the 

evaluation of even more complex physiologic (disease) situations in which the diagnostic possibilities 

are broader.  

Clinical Correlates: Linking the behavior of Control Systems and Pathophysiology 

Clinicians know that changes in actuator signals (e.g. HR increases) can signify a great variety of 

potentially important derangements such as hypovolemia, congestive heart failure, inflammation, sepsis, 

etc [6-10].  Even without specific diagnostic content, alerts to clinicians that HRV is changing can be 

useful.  Such an alert incorporated into monitoring of premature neonates prompts clinicians to suspect 

and treat sepsis (a major cause of mortality in this population), before more standard indications are 

detected [10].    This particular example of integration of mathematical analysis into monitors represents 

a special situation since the alert also incorporates the occurrence of cardiac decelearations, an event not 

observed in adults, and only one diagnosis is considered--sepsis, with only one treatment under 

consideration--antimicrobials.  However, in most clinical scenarios, actuator changes alone are usually 

so generic that they lack specific diagnostic value, and extensive analyses of individual time series have 

not yielded mechanistic explanations that can narrow the diagnosis [6-9].  

In contrast, the general type of models and methods used here and the application of control 

theory to physiology present an enormous opportunity to re-examine this area with powerful 

mathematical tools and a systems engineering approach [47].  This is important because system 

dysfunction is manifested earlier in the behavior of the control system than in any metric associated with 

the system’s output. The long-term goal of this research is earlier diagnosis afforded by monitoring 

control elements in addition to individual signal outputs. 
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Materials and Methods 

After Caltech Institutional Review Board approval, five fit athletic subjects (ages 25 to 35, 3 men 

and 2 women) performed a series of experimental exercise regimens, each on two different days. The 

intensity and durations were less than routine training for these athletes, and they had used the lab 

equipment before so were familiar and comfortable with the environment.   In all experiments, the 

subject peddled a Life Fitness stationary recumbent bicycle at near constant speed with the peddling 

resistance controlled by a preprogrammed protocol. In the respiration rate (RR) sweep experiments, a 

sinusoid signal was preprogrammed in the computer with frequency from 2 Hz to 0.06 Hz and each 

subject watched the signal and controlled RR to follow the frequency of the signal until they were 

unable to continue.  

  In all exercise tests, 1 Hz work rate data were recorded from a Life Fitness stationary 

recumbent exercise bicycle interfaced with a computer running MATLAB via the CSAFE protocol. 

Other exercise testing data were collected using commercially available noninvasive monitors. (i) R-R 

interval HR data were recorded with a Polar heart rate monitor (Oulu, Finland) and converted to 1Hz HR 

data using a spline IPFM scheme [48]. (ii) In the tests shown in Figs. 5, 6, 100Hz ventilation (inhalation 

and exhalation) flow rate data were recorded with a Philips NiCO®2 Monitor, and down-sampled to 1Hz 

ventilation flow rate data. (iii) In the test shown in Fig. 7, 1Hz gas data including minute ventilation EV , 

oxygen consumption  and carbon dioxide generation  were collected with a Vacumetrics 

monitor and TuboFitTM software (Ventura, CA). No other preprocessing of data was performed. 

A detailed discussion of mathematical methods is given in SI. 
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Figure 1: HR responses to simple changes in muscle work rate on a stationary bicycle:  Each 
experimental subject performed separate stationary cycle exercises of ~ 10 minutes for each 
workload profile, with different means but nearly identical square wave fluctuations around the 
mean. A typical result is shown from subject #1 for 3 workload profiles with time on the horizontal 
axis (zoomed  in to focus on a 6 minute window).  (A) HR (red) and workload (blue); linear local 
piecewise static fits (black) with different parameters for each exercise.  The workload units (most 
strenuous exercise on top of graph) are shifted and scaled so that the blue curves are also the best 
global linear fit. (B) Corresponding dynamics fits, either local piecewise linear (black) or global 
linear (blue). Note that, on all time scales, mean HR increases and variability (HRV) goes down with 
the increasing workload. Breathing was spontaneous (not controlled). 
 

Medium workload 

High Workload  

Low Workload  



Figure 2: Schematic for cardiovascular control of aerobic metabolism and summary of main 
variables:  Blue arrows represent venous beds, and  red arrows are arterial beds, and dashed lines 
represent controls.  Four types of signals, distinct in both functional role and time series behavior, 
together define the required elements for robust efficiency. The main control requirement is to maintain 
1) small “errors” in internal variables for brain homeostasis  (e.g., arterial O2 saturation SaO2, mean 
arterial blood pressure Pas, and cerebral blood flow CBF), and muscle efficiency (oxygen extraction 
∆O2  across working muscle)  despite 2)  external disturbances (muscle work rate W), and 3) internal 
sensor noise and perturbations (e.g. pressure changes from different respiratory patterns due to pulsatile 
ventilation V) using 4) actuators (heart rate H, minute ventilation    , vasodilatation and peripheral 
resistance R, and local cerebral autoregulation).  
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Figure 3: Static analysis of cardiovascular control of aerobic metabolism as workload increases: 
Static data from Fig. 1A are summarized in (A) and the physiological model explaining the data is in (B) 
and (C). The solid black curves in (A) and (B) are idealized (i.e. piecewise linear) and qualitatively 
typical values for H=h(W) that are globally consistent with static piecewise linear fits (black in Fig. 1A) at 
the two lower workload levels. The dashed line in (A) shows h(W) from the global static linear fit (blue in 
Fig. 1A) and in (B) shows a hypothetical but physiologically implausible linear continuation of increasing 
HR at the low workload level (solid line) . The mesh plot in (C) depicts Pas-∆O2 (mean arterial blood 
pressure -- tissue oxygen difference) on the plane of the H-W mesh plot in (B) using the physiological 
model (Pas, ∆O2) = f (H, W) for generic, plausible values of physiological constants.  Thus any function 
H=h(w) can be mapped from the H, W plane (B) using model f to the (P, ∆O2) plane (C) to determine the 
consequences of  Pas and ∆O2.  The reduction in slope of H=h(w) with increasing workload is the simplest 
manifestation of changing HRV addressed in this study.   
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Figure 4: Optimal control model response using 1st principle model to two different workload 
(blue) demands, approximately square waves of 0-50 w (lower) and 100-150w (upper): For each data 
set (using Subject #2 data), a physiological model with optimal controller is simulated with workload as 
input (blue) and HR (black) as output, and compared with collected HR data (red).  Simulations of 
blood pressure (Pas, purple) and tissue oxygen saturation ([O2]T , green) are consistent with the 
literature but data were not collected from subjects. Breathing is spontaneous (not controlled). 
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Figure 5: Heart rate response (red) to ventilation v (blue) at rest (0 watts): The ventilatory data 
are raw speed of inhalation and exhalation measured at the mouthpiece.  In each case the units for v 
(blue) are chosen to show the optimal static fit h(v)=b·v+c to the collected HR data. (A) and (B) show 
natural breathing, with (B) zoomed in to focus on a smaller window to help visualize the data and fit.  
(C)  and (D) are similar focused smaller windows from a longer controlled breathing experiment at 
resting (0 watts) where the subject followed a frequency sweep from fast to slow breathing (see 
Figure 6 for the full frequency range).  (C) focuses on breathing frequencies close to natural 
breathing, while (D) focuses on frequencies slower than natural. Both (C) and (D) show simulated 
dynamic fits (black), and optimal static fits h(v)=b·v+c (blue).  The dynamic fits improve on the static 
fits more for the controlled sweep than for natural breathing (see Table 2). 
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Figure 6: HR response to sweep ventilation on different workload levels:  Two experiments with (A) 
HR (red) and dynamic fit (black) to input of controlled ventilation frequency sweeps with measured 
ventilatory flow rate (blue) on a  fixed background workload of (B) 0 or (C) 50 watts. Ventilatory flow 
(with spontaneous ventilation magnitude) was necessarily larger at 50 watts and the subject was unable 
to breathe slowly enough to complete the entire frequency sweep.  
 



Row # # prms Model structure 0-50 watts 100-150 watts 250-300 watts 

1 0 zero: h(W)=0 60.40 99.97 148.59 

2 2 global static: 
h(W)=b·W+C 10.1 6.9 10.4 

3 3=1×3 piecewise constant 
hi(W)=Ci 

14.8 4.7 6.7 

4 6=2×3 piecewise static 
hi (W)=bi·W+Ci 

9.6 3.2 6.6 

5 3 global 1st order 
Δh(t)=ah(t)+bW+C 11.6 3.2 6.5 

6 9=3×3 piecewise 1st order  
Δhi (t)=ahi (t)+biW+Ci 

8.9 2.1 0.9 

Table 1: RMS error for models of different complexity for data in Figure 1. Items in yellow 
highlight the best models balancing fitting error with model complexity. For the piecewise 
model, i=1,2,3 stands for each exercise level respectively, i.e., 0-50, 100-150, 250-300 watts. 
  

Row # # prms Model 
structure 

Resting 
natural 

Resting 
sweep 

50 watts 
sweep 

1 0 zero 56 67 98 

2 1 constant 11.6 13.1 7.9 

3 2 Static 6.4 9.7 5.9 

4 3 1st order 
dynamic  

6.0 9.7 5.5  

5 6 2nd order 
dynamic 

6.0 7.5 4.0 

Table 2: RMS error for models of different complexity for data in Figure 5-6. Items 
in yellow highlight the best models balancing fitting error with model complexity. 
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