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Abstract— Generalized switch is a model of a queueing system
where parallel servers are interdependent and have time-varying
service capabilities. This paper considers the dual scheduling
algorithm that uses rate control and queue-length based schedul-
ing to allocate resources for a generalized switch. We consider
a saturated system in which each user has in£nite amount of
data to be served. We prove the asymptotic optimality of the
dual scheduling algorithm for such a system, which says that
the vector of average service rates of the scheduling algorithm
maximizes some aggregate concave utility functions. As the
fairness objectives can be achieved by appropriately choosing
utility functions, the asymptotic optimality establishes the fairness
properties of the dual scheduling algorithm.

The dual scheduling algorithm motivates a new architecture
for scheduling, in which an additional queue is introduced to
interface the user data queue and the time-varying server and to
modulate the scheduling process, so as to achieve different per-
formance objectives. Further research would include scheduling
with Quality of Service guarantees with the dual scheduler, and
its application and implementation in various versions of the
generalized switch model.

I. INTRODUCTION

We consider a general model where a set S of queues
(users) are served in discrete time by a generalized switch,
as de£ned in [22]. The generalized switch can be viewed
as a discrete-time, interdependent parallel server system. The
servers are interdependent in that they cannot provide service
simultaneously, and the dependency among them is re¤ected
on the constraints that specify which subsets of servers can
be active at the same time. Switch state h follows a discrete-
time, £nite-state Markov chain. At each time slot t, the switch
can choose a scheduling decision m from a £nite set M ,
which captures the constraints imposed by the interdependency
among the servers. Each scheduling decision has the associated
vector of service rates r̃m(h(t)) at which queues are served,
where h(t) is the switch state at time t.

The generalized switch model has many applications in
communication networks. For example, in cellular network
in the downlink, the servers correspond to the wireless links
from the base stations to the users, and the constraint is that
each base station can transmit to at most one of the users and
each user can be served by at most one of the base stations
in each time slot, see e.g. [5], [10]. Other examples include
multi-hop wireless network where each wireless link can be
viewed as a server and the constraints disallow simultaneous
transmission of neighboring links due to interference, see e.g.
[26], [27], [28]. It also includes as a single-state special case

input-queued cross-bar switch where a server corresponds to
each input-output port pair, and the constraint is that each
input port transmits to exactly one of the output ports and each
output port receives from exactly one of the input ports at any
time, see e.g. [17]. The same model can extend to handle the
packet switch in wireless network, where the switch state (i.e.,
wireless line rates) is supposedly time-varying.

For such a generalized switch system with time-varying
state, the service rate that can be offered to the users (queues)
is both user-dependent and time-dependent. This, on one
hand, opens up the possibility to use state-aware schedul-
ing strategies, i.e., to exploit service variations to increase
the throughput. On the other hand, the parallel servers are
interdependent, and to serve (schedule) always the user with
the highest potential rate maximizes overall throughput but
usually results in the starvation of some users. So, we need to
trade off throughput for fairness. However, the time-varying
nature of the generalized switch, coupled with the user-
dependent service rate and unknown data arrival, makes it
very challenging to design scheduling policies to ful£l fairness
and throughput requirements, as well as other performance
objectives.

In this paper, we study the dual scheduling algorithms for
the generalized switch. These algorithms are motivated by the
dual subgradient algorithm of convex optimization problems
[21], [6]. With an additional queue (termed M-queue) being
introduced for each user, the dual scheduling algorithm is
a combination of rate control (of the M-queue) and M-
queue-length based scheduling. The rate control algorithm is
motivated by utility framework for TCP congestion control
(see e.g. [12], [16]), which shows that various TCP congestion
control protocols can be interpreted as distributed primal-dual
algorithms to solve aggregate network utility maximization.
The queue-length based scheduling takes the form of a simple
throughput-optimal scheduling [26], [27], [28]. As such, while
the queue-length-based scheduling part keeps maximizing the
throughput, the rate-control part modulates the scheduling
process by choosing appropriate utility functions, so as to
achieve various performance objectives.

Section III presents the details of system model and the dual
scheduling algorithm for the generalized switch. In Section IV,
we consider a saturated system in which each user has in£nite
amount of data to be served. For such a system, fairness
among the users is presumably the most important concern.
We present a dual scheduling algorithm, which can be seen
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as an extension of the algorithm studied in [9], and prove its
asymptotic optimality, which says that the vector of average
service rates of the scheduling algorithm maximizes some
aggregate concave utilities of the users. As is well-known, the
fairness objectives can be achieved by appropriately choosing
the utility functions. So, the asymptotic optimality estab-
lishes the fairness properties of the dual scheduling algorithm.
Also, the proofs presented in this section are rather general.
They only use general properties of convex/concave function,
subgradient and convex set, and represent an integration of
convex optimization and stochastic control, and can be readily
extended to other systems.

The dual scheduling algorithm motivates a new architecture
for scheduling in the generalized switch, in which an addi-
tional queue is introduced to interface the user data queue
and the time-varying server and to modulate the scheduling
process, so as to achieve different performance objectives
such as fairness, and maximum throughput, etc. In Section
V, we will brie¤y discuss some implementation issues and
advantages of the dual scheduler, and Quality of Service
scheduling in generalized switches.

II. RELATED WORK

There exists lots of work on scheduling with different per-
formance objectives for different versions of the generalized
switch model. For fair scheduling, in the context of cellular
network in the downlink, one of the principal policies is the
Proportional Fair Scheduler of Qualcomm High Data Rate
system [5], [10], which schedules the user with the largest ratio
of the current achievable rate to the exponentially smoothed
throughput. This scheduling algorithm has been shown to
maximize the sum of the logarithm utilities of the long-run
average data rates provided to the users [29], [13], [25], and
thus achieve proportional fairness [11]. The generalization
of the proportional fair scheduling algorithm to any concave
utility function for a generalized switch has been studied1,
see e.g. [23]. Other work on fair scheduling includes, e.g.,
[14], [7], [15]. For throughput-optimal scheduling that attains
maximum stability region of the system, one of the principal
policies is the MaxWeight scheduling in the context of wireless
network, see e.g. [26], [27], [28], [1], [20], [18], [8], and in
the context of input-queued switch, see e.g. [17]. The stability
region of a scheduling policy is the set of mean ¤ow rate
vectors such that the queue-length process is stable under this
policy. The throughput-optimal scheduling has its origin in
[26], [27], [28], where it is shown that allocating resources to
maximize a queue-length-weighted sum of rates is a stabilizing
policy under any sustainable ¤ows. However, there is no
fairness guarantee with throughput-optimal scheduling.

The dual scheduling algorithm for saturated systems can
be seen as an extension of the algorithm studied in [9] to
generalized switches with general user utilities. They also
use different proof techniques for asymptotic optimality. The

1We call this type of scheduling policies the primal scheduling algorithms,
since they can be seen as the gradient algorithm to solve a concave utility
maximization problem directly.

connection between fair resource allocation and duality can
also be found in [19] and subsequent works. Similar result on
asymptotic optimality is also obtained in [24] through a much
different technique.

III. SYSTEM MODEL

We consider a queueing system where a £nite set S of par-
allel queues (users), indexed by s, are served by a generalized
switch. The generalized switch can be abstracted as an interde-
pendent parallel server system. The servers are interdependent
in that they cannot provide service simultaneously, and the
dependency among them is re¤ected on the constraints that
specify which subsets of servers can be active at the same time.
For convenience, we use a “dependency” graph G to capture
this interdependency. Each vertex in G represents a server, and
an edge between two vertices means the corresponding servers
cannot be active simultaneously. Thus, only those servers in
an independent set2 of the dependency graph can be active at
the same time. We denote the set of independent sets by M ,
with each element indexed by m.

The system operates in discrete time t = 0, 1, 2, · · ·. By
convention, we choose the duration of a time slot as the unit of
time, and identify time t with the unit time interval [t, t + 1).
The switch has a £nite set H of states. The switch state is
£xed in one of the states h ∈ H within a time slot but varies
across slots according to an irreducible £nite-state Markov
chain. Corresponding to the switch state h, the service rate to
user s is rs(h) packets per time slot when the switch servers
only s, and the service rate vectors r̃m(h), m ∈ M that can
be offered to the users are

r̃m
s (h) =

{
rs(h) if s ∈ m

0 otherwise.

By standard time-sharing argument, the feasible rate region
Π(h) in switch state h is de£ned to be the convex hull of
these rate vectors [4]

Π(h) :=

{
r̃ : r̃ =

M∑
i=1

tir̃
i(h), ti ≥ 0,

M∑
i=1

ti = 1

}
, (1)

where we slightly abuse the notation and let M also denote
the size of the set M . Let the switch state distribution be d(h),
we further de£ne the mean feasible rate (capacity) region as

Π =

{
r : r =

∑
h∈H

d(h)r̃(h), r̃(h) ∈ Π(h)

}
. (2)

This mean rate region is a closed convex set, and is the best
feasible rate region the system can support on average.

A. Queue Length Dynamics

Fig.1 shows the architecture of the dual scheduler from the
perspective of one user. The system keeps separate data queues
for the users to buffer the data intended to them. In addition,
another queue, called M-queue, is introduced for each user.

2An independent set of vertices is de£ned as a set of vertices that have no
edges between each other. An empty set is an interdependent set.



The M-queue interfaces the data queue and the time-varying
server, in that the data will depart from the data queue to enter
the M-queue, and the server will directly serve the M-queue.

    Dual Scheduler

M−QueueData Queue

As(t)
Qs(t) sp (t)

sx (t) s(t)c

Fig. 1. The Architecture of the Dual Scheduler.

Denote the size of the data queue and M-queue for user
s at the beginning of the time slot t by Qs(t) and ps(t)
respectively, the number of arrivals to the data queue and M-
queue of user s in time slot t by As(t) and xs(t) respectively,
and the amount of service offered to the M-queue of user s
in time slot t by cs(t). The evolutions of the data queue and
M-queue length for user s are given by

Qs(t + 1) = Qs(t) + As(t) − xs(t) , (3)
ps(t + 1) = [ps(t) + xs(t) − cs(t)]+, (4)

where ‘+’ denotes the projection onto the set �+ of non-
negative real numbers.

We further introduce a small parameter γ > 0, and for
convenience, de£ne a new quantity qs(t) = γps(t) for each
user s. In Section IV we will see that γ characterizes the
asymptotic optimality and fairness of the dual scheduling
algorithm. We call q the scaled queue-length, since it is the
M-queue length scaled by γ. By equation (4), the evolution of
the scaled queue-length is given by

qs(t + 1) = [qs(t) + γ(xs(t) − cs(t))]+. (5)

With the dual scheduling algorithm, the system controls the
arrival rate into the M-queues and determines service rates
offered to the M-queues based on queue-length.

B. Dual Scheduling Algorithm

We assume that each user s attains a utility Us(xs) when its
arrival rate to the M-queue is xs packets per time slot. Us(·)
may be dependent of data queue size Qs, but is assumed to
be continuously differentiable, increasing and strictly concave
with respect to xs. In time slot t, given the current M-queue
length ps(t), the maximal arrival rate to the M-queue of user
s is speci£ed as following

xs(t) = min
{

U ′
s
−1(γps(t)), αs

}
= min

{
U ′

s
−1(qs(t)), αs

}
, (6)

where αs > maxh rs(h) is the upper bound speci£ed on the
arrival rate, and thus xs(t) maximizes Us(xs)−qsxs over 0 ≤
x ≤ αs. Note that we choose packet of equal length as the unit
of data. xs will be rounded to closest integer automatically.

We now consider service allocation. In time slot t, given the
current M-queue length p(t), the switch selects a (physical)
service rate vector3

c(t) ∈ arg max
c∈Π(h(t))

p(t)T c = arg max
c∈Π(h(t))

q(t)T c , (7)

where we will always pick an extreme point maximizer4.
Equation (7) takes the form of simple throughput-optimal
scheduling as proposed in [26], [27], which schedules the
transmissions dynamically based only on current system back-
log and switch state.

Equations (3)-(7) de£ne the dual scheduling algorithm.
When the M-queue length process is stable, xs will be the
service rate offered to user s. This scheduling algorithm can
be seen as motivated by the dual subgradient algorithm of
concave maximization problem maxx

∑
s Us(xs), and is a

combination of rate control [12], [16] and queue-length-based
scheduling. As the queue-length-based scheduling part keeps
maximizing the throughput, the rate-control part modulates the
scheduling process by choosing appropriate utility functions,
so as to achieve various performance objectives.

Given a scheduling algorithm, two of important issues
that need to be addressed are to characterize its fairness
property and its stability region. The fairness property governs
the resource allocation among the competing users, and the
stability region determines the ef£ciency of the scheduling
algorithm as a whole. We will study the fairness property in
this paper, and leave the stability region and other user-level
performance for future work.

IV. ASYMPTOTIC OPTIMALITY AND FAIRNESS

We consider a saturated system in which each user has
in£nite amount of data to be served, i.e., the user data queue is
in£nitely backlogged. So, the data queue is irrelevant and the
choice of utility function Us(·) is independent of Qs. The dual
scheduling algorithm is thus de£ned by equations (4)-(7). We
will show that the dual scheduling algorithm maximizes some
aggregate concave utilities and establish its fairness properties
through its asymptotic optimality.

A. An Ideal Reference System

Before preceding, let us £rst de£ne an ideal reference
system problem,

max
xs≥0,cs≥0

∑
s

Us(xs) (8)

subject to x ≤ c & c ∈ Π. (9)

The £rst constraint says that the arrival rate to the M-queues
should not exceed the physical service rate. The second
constraint says that the physical service rate should be in the
mean rate region, which is the best feasible rate region the
system can support. We will characterize the performance of

3We call the service rate allocated to the M-queue the physical service rate,
in order to distinguish from the service rate received by the user data queue
which will be xs if M-queue is table.

4A point in a convex set is an extreme point if it cannot be written as a
convex combination of other points in the convex set.



the dual scheduling algorithm with respect to this reference
system.

Proposition 1: The solution x∗ to problem (8)-(9) exists
and is unique.

Proof: The proof is trivial, since the objective function
is strictly concave and the constraint set is a closed, convex
set [6].

Consider the dual problem of the reference system problem
(8)-(9)

min
u≥0

D(u) (10)

with partial dual function

D(u) = max
xs≥0,cs≥0

∑
s

Us(xs) − uT (x − c) (11)

subject to c ∈ Π, (12)

where we relax only the constraint x ≤ c by introducing
Lagrange multiplier u.

Proposition 2: The solution u∗ to dual problem (10) exists.
Moreover, there is no dual gap between the primal problem
(8)-(9) and the dual problem (10).

Proof: The proof is trivial, since problem (8)-(9) is a
convex optimization problem [6].

Having established the properties of the ideal reference
system problem and its dual, in the next subsection we will
characterize the dual scheduling algorithm with respect to
them.

Remark 1: Roughly speaking, the primal scheduling algo-
rithm is a scheduling policy whose vector of average service
rates solving the problem

max
xs≥0

∑
s

Us(xs)

subject to x ∈ Π.

This problem is equivalent to problem (8)-(9), since mathe-
matically c can be seen as an auxiliary variable. The primal
scheduling algorithm can be seen as being motivated by the
gradient algorithm to solve this problem [23], while the dual
scheduling algorithm can be seen as being motivated by the
dual gradient algorithm to solve the same problem.

B. Stochastic Stability

Note that M-queue length p(t) (and scaled queue-length
q(t)) evolves according to a discrete-time, discrete-space
Markov chain. We £rst show that this Markov chain is stable,
i.e., the queue-length process reaches a steady state and
does not go unbounded to in£nity. It is easy to check that
the Markov chain has a countable state space, but is not
necessarily irreducible. In such a general case, the state space
is partitioned in transient set T and different recurrent classes
Ri. We de£ne the system to be stable if all recurrent states are
positive recurrent and the Markov process hits the recurrent
states with probability one [26]. This will guarantee that the
Markov chain will be absorbed/reduced into some recurrent

class, and the positive recurrence ensures the ergodicity of the
Markov chain over this class.

Theorem 3: The Markov chains described by equations (4)
and (5) are stable.

Proof: Consider the the Lyapunov function V (q) = ‖q−
u∗‖2

2. By equations (5)-(7) and de£ne g(q) = c(q)−x(q), we
have

E[∆Vt(q)|q]
= E[V (q(t + 1)) − V (q(t)) | q(t) = q]
= E[V ([q(t) − γg(q(t))]+) − V (q(t)) | q(t) = q]
≤ E[V (q(t) − γg(q(t))) − V (q(t)) | q(t) = q]
= E[−γg(q(t))T (2(q(t) − u∗) − γg(q(t))) | q(t) = q]
= 2γg(q)T (u∗ − q) + γ2E[‖g(q(t))‖2

2 | q(t) = q]
≤ 2γg(q)T (u∗ − q) + γ2G2,

where G is the upper bound of the norm of g(q(t)), and

g(q) = c(q) − x(q) with c(q) ∈ arg max
c∈Π

qT c . (13)

It is easy to check that g(q) is a subgradient5 of the dual
function D(q) at point q, thus

g(q)T (u∗ − q) ≤ D(u∗) − D(q) .

So,

E[∆Vt(q)|q] ≤ 2γ(D(u∗) − D(q)) + γ2G2.

Note that D(q) is a continuous function. Let

δ = max
D(q)−D(u∗)≤γG2

‖q − u∗‖2

and de£ne A = {q : ‖q − u∗‖2 ≤ δ}. We can get

E[∆Vt(q)|q] ≤ −γ2G2Iq∈Ac + γ2G2Iq∈A ,

where I is the index function. Thus, by Theorem 3.1 in [26],
which is a trivial extension of Foster’s criterion for irreducible
chain [3], the Markov chain q(t) is stable. Since the M-queue
length p(t) = γq(t), the Markov chain p(t) is also stable.

The above proof shows that the distance to the optimal u∗

has negative conditional mean drift for all scaled queue-length
that have suf£ciently large distance to u∗, and implies that the
scaled queue-length will stay near u∗ when γ is small enough.

Remark 2: We can make the Markov chain p(t) irreducible
over its state space, by making the arrival x(t) a random
variable with mean min{U ′

s
−1(γps(t)), αs}, as that assumed

in [9]. We can also make the system to reach a speci£c state
in£nitely often with £nite mean recurrence times, which will
ensure that the system reduces to one recurrent class whatever
the initial state is.

5Given a convex function f : Rn �→ R, a vector d ∈ Rn is a subgradient
of f at a point u ∈ Rn if f(v) ≥ f(u) + (v − u)T d, v ∈ Rn [21], [6].



C. Asymptotic Optimality and Fairness

In this subsection, we will prove the asymptotic optimality
of the dual scheduling algorithm in terms of dual and primal
functions of the reference system problem (8)-(9).

Theorem 4: The dual scheduling algorithm (4)-(7) con-
verges statistically to within a small neighborhood of the
optimal value D(u∗), i.e.,

D(u∗) ≤ D(E[q(∞)]) ≤ D(u∗) + γG2/2, (14)

where q(∞) is a notation used to denote the state of the
Markov chain q(t) in the steady state.

Proof: The £rst inequality D(u∗) ≤ D(p) always holds,
since D(u∗) is the minimum of the dual function D(u).

Now we prove the second inequality. From the proof of
Theorem 3, we have

E[∆Vt(q)|q] = E[V (q(t + 1)) − V (q(t)) | q(t) = q]
≤ 2γ(D(u∗) − D(q)) + γ2G2.

Taking expectation over q, we get

E[∆Vt(q)] = E[V (q(t + 1)) − V (q(t))]
≤ 2γ(D(u∗) − E[D(q)]) + γ2G2.

Taking summation from τ = 0 to τ = t − 1, we obtain

E[V (q(t))] ≤ E[V (q(0))] − 2γ
t−1∑
τ=0

E[D(q(τ))]

+2γtD(u∗) + tγ2G2.

Since E[V (q(t))] ≥ 0, we have

2γ
t−1∑
τ=0

E[D(q(τ))] − 2γtD(u∗) ≤ E[V (q(0))] + tγ2G2.

From this inequality we obtain

1
t

t−1∑
τ=0

E[D(q(τ))] − D(u∗) ≤ E[V (q(0))] + tγ2G2

2tγ
.

Note that q(t) is stationary and ergodic in some steady state
by Theorem 3, and so is D(q(t)). Thus,

lim
t→∞

1
t

t−1∑
τ=0

E[D(q(τ))] = E[D(q(∞))].

So,

E[D(q(∞))] − D(u∗) ≤ γG2/2.

Since D(q) is a convex function, by Jensen’s inequality,

D(E[q(∞)]) − D(u∗) ≤ γG2/2,

i.e., the algorithm converges statistically to within γG2/2 of
the optimal value D(u∗).

Since D(q) is a continuous function, Theorem 4 implies that
the scaled queue-length q approaches u∗ statistically when γ
is small enough.

Corollary 5: x(t) is a stable Markov chain. Moreover, the
average arrival rates E[x(∞)] ∈ Π, where x(∞) denotes the
state of the process x(t) in the steady state.

Proof: x(t) is a deterministic, £nite-value function of
q(t). x(t) is a stable Markov chain, since q(t) is. E[x(∞)] ∈
Π, otherwise the average scaled queue-length E[q(∞)] will
go unbounded, which contradicts to Theorem 4.

Theorem 6: Let P (x) be the primal function of the refer-
ence system problem (8)-(9). The dual scheduling algorithm
(4)-(7) converges statistically to within a small neighborhood
of the optimal value P (x∗), i.e.,

P (x∗) ≥ P (E[x(∞)]) ≥ P (x∗) − γG2

2
. (15)

Proof: The £rst inequality P (x∗) ≥ P (E[x(∞)]) holds,
since E[x(∞)] ∈ Π.

Now we prove the second inequality. By equation (5), we
have

E[||q(t + 1)||22|q(t)]
= E[||[q(t) − γg(q(t))]+||22|q(t)]
≤ E[||q(t) − γg(q(t))||22|q(t)]
= ||q(t)||22 − 2γg(q(t))T q(t) + γ2E[||g(q(t))||22|q(t)]
= ||q(t)||22 + 2γ

∑
s

Us(xs(t))

−2γ
∑

s

(Us(xs(t)) − qs(t)xs(t))

−2γ
∑

s

qs(t)cs(t) + γ2E[||g(p(t))||22|q(t)]

≤ ||q(t)||22 + 2γ
∑

s

Us(xs(t))

−2γ
∑

s

(Us(x∗
s) − qs(t)x∗

s)

−2γ
∑

s

qs(t)cs(t) + γ2E[||g(p(t))||22|q(t)]

= ||q(t)||22 + 2γP (x(t)) − 2γP (x∗)

−2γ
∑

s

qs(t)(cs(t) − x∗
s) + γ2E[||g(q(t))||22|q(t)]

≤ ||q(t)||22 + 2γP (x(t)) − 2γP (x∗)
+γ2E[||g(q(t))||22|q(t)]

≤ ||q(t)||22 + 2γP (x(t)) − 2γP (x∗) + γ2G2,

where g(q) is de£ned as in equation (13), the second in-
equality follows from the fact that xs(t) is the maximizer of
maxxs

(Us(xs)− qsxs), and the third inequality follows from
the fact that c(t) is the maximizer in equation (13) and x∗ ∈ Π.

Taking expectation over q, we get

E[||q(t + 1)||22] ≤ E[||q(t)||22] + 2γE[P (x(t))]
−2γP (x∗) + γ2G2.

Applying the inequalities recursively, we obtain

E[||p(t)||22] ≤ E[||p(0)||22] + 2γ
t−1∑
τ=0

(E[P (x(τ))]

−P (x∗)) + tγ2G2.



Since E[||p(t)||22] ≥ 0, we have

2γ
t−1∑
τ=0

(E[P (x(τ))] − P (x∗)) ≥ −E[||p(0)||22] − tγ2G2.

From this inequality we obtain

1
t

t−1∑
τ=0

E[P (x(τ))] − P (x∗) ≥ −E[||p(0)||22] − tγ2G2

2tγ
.

Note that x(t) is stationary and ergodic in some steady state
by Corollary 5. Thus,

lim
t→∞

1
t

t−1∑
τ=0

E[P (x(τ))] = E[P (x(∞))].

So,

E[(P (x(∞))] − P (x∗) ≥ −γG2

2
.

Since P is a concave function, by Jenson’s inequality,

P (E[x(∞)]) − P (x∗) ≥ −γG2

2
,

i.e., the algorithm converges statistically to within γG2/2 of
the optimal value P (x∗).

Since P (x) is a continuous function, Theorems 6 implies
that the average arrival rates to the M-queues approaches the
optimal of the ideal reference system (8)-(9) when γ is small
enough. Note that, when the M-queue length is stable, x will
be the service rates offered to the users. Theorem 4 and 6
shows that, surprisingly, the vector of average service rates
offered by the dual scheduling algorithm (4)-(7) approximately
solves the ideal reference system problem, which is to maxi-
mize the aggregate concave utilities over the best feasible rate
region that the network can support.

As is well-known, the fairness objectives can be achieved
by appropriately choosing the concave objective functions. So,
the asymptotic optimality establishes the fairness properties of
the dual scheduling algorithm. For example, if we choose log-
arithm utility function Us(xs) = log(xs), the dual scheduler
will achieve proportional fairness [11], [9].

Note that the above proofs for stability and performance
bounds are rather general. They only use general properties
of convex/concave function, subgradient and convex set, and
represent an integration of convex optimization and stochastic
control. These stability and optimality results can be readily
extended to other systems.

V. A NEW SCHEDULING ARCHITECTURE

The dual scheduling algorithm motivates a new architecture
for scheduling in the generalized switch (please see Fig.1
for a pictorial depiction). In this new architecture, a queue,
termed M-queue, is introduced to interface the user data
queue and the time-varying server. Data will depart from the
data queue to enter the M-queue, and the generalized switch
serves directly the M-queue. Through controlling the arrival
process to the M-queue (or the departure process from the data

queue), we can modulate the scheduling process, in order to
achieve different performance objectives such as fairness, and
maximum throughput, etc.

The dual scheduler would not incur much additional com-
plexity. M-queues are distributed at each user, and can be
“virtual” or be implemented as physical queues. The control
of the M-queue arrival process is also distributed at each
user and depends on only the “local” queue length of each
user. The dual scheduler provides some advantages over other
scheduling algorithms. For example, in the cellular network in
the downlink, even though the primary scheduling algorithm
can achieve fair resource allocation, it requires to estimate the
average throughput of the users, while with the dual algorithm
we only need to simply measure the M-queue length. Also,
the dynamics of the M-queue (p(t) and x(t)) is feedback-
controlled, and thus will be relatively smooth, comparing with
the dynamics of the switch. So, the dual scheduler can provide
a relatively reliable and smooth service to the users, and can
behave as a good interface between higher layer protocols and
the scheduling at the link layer and ensure a better performance
of the higher-layer protocols such as that of TCP congestion
control.

To provide Quality of Service in generalized switches is
a dif£cult problem. In the context of wireless networks, the
interdependence of wireless links in combination with the
time-varying nature of wireless channel makes QoS scheduling
fairly challenging and the available results are mostly on
stability guarantees. In the context of input-queued cross-bar
switch, input buffering makes scalable switch design possible
but makes QoS guarantees very challenging and again most
available results are on maximizing the throughput. The dual
scheduler might be promising in providing QoS in generalized
switches, through carefully designing the M-queue arrival
process. Further study is needed on related issues.

VI. CONCLUSIONS

In this paper, we consider the dual scheduling algorithm
for a generalized switch. For a saturated system, we prove
the asymptotic optimality of the dual scheduling algorithm
and thus establish its fairness properties. The dual scheduling
algorithm motivates a new architecture for scheduling, in
which an additional queue is introduced to interface the user
data queue and the time-varying server and to modulate the
scheduling process, so as to achieve different performance ob-
jectives. Further research stemming out of this article includes
scheduling with Quality of Service guarantees with the dual
scheduler, and its application and implementation in various
versions of the generalized switch model.

In the context of cellular networks, the dual scheduling
algorithms provide an alternative to the primal scheduling al-
gorithms such as the Proportional Fair Scheduler of Qualcomm
High Data Rate system. We will also study user-perceived
performance of the dual scheduling algorithm in future work.
As the number of data ¤ows (and even the number of users) in
progress is highly dynamic, increasing at the instants of some
arrival process and decreasing as the transfer of £nite size



data is completed, there exists a strong interaction between
the stochastic process describing the number of data ¤ows in
progress and the way in which different users are served. This
motivates us to further study user-perceived performance, such
as cell capacity, transfer delay and transfer time, and blocking
rate, etc, in the context of cellular network in the downlink.
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