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a b s t r a c t

This paper presents the stability analysis and control synthesis for a sampled-data control system which
consists of a nonlinear plant and an output-feedback sampled-data polynomial controller connected in a
closed loop. The output-feedback sampled-data polynomial controller, which can be implemented by a
microcontroller or a digital computer, is proposed to stabilize the nonlinear plant. Based on the Lyapunov
stability theory, stability conditions in terms of sum of squares are obtained to guarantee the stability
and to aid the design of a polynomial controller. A simulation example is given to demonstrate the
effectiveness of the proposed control approach.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Due to the rapid growth of computer technology, microcon-
trollers and digital computers can be available at low cost. A
sampled-data controller implemented by a microcontroller or a
digital computer can lower the implementation cost and time.
However, due to the zero order hold (ZOH), the sampled-data con-
troller holding the control signal constant during the sampling pe-
riod introduces discontinuity to the systemwhich complicates the
system dynamics and makes the analysis difficult.

The stability of linear (Chen & Francis, 1991) and nonlinear
(Monaco & Normand-Cyrot, 1995; Sontag, 1989) sampled-data
control systems has been investigated for decades. Emulation is
one of the methods for the design of sampled-data controllers.
In general, a controller is designed based on the continuous-time
plant, followed by a discretization process. Due to the difficulty
in obtaining the exact discrete-time model of the nonlinear
plant, an approximate discrete-time system model is employed
to investigate the stability. Various stability properties were
developed in Laila and Astolfi (2005), Laila and Nešić (2004),
Laila, Nešić, and Teel (2002), Nešić and Angeli (2002), Nešić and
Grüne (2005), Grüne, Worthmann, and Nešić (2008), Liu, Marquez,
and Lin (2008), Mirkin (2007), Naghshtabrizi, Hespanha, and Teel
(2006) and the references therein. The satisfaction of the stability
properties guarantees the stability of the sampled-data control
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system formed by the continuous-time nonlinear plant and the
sampled-data controller connected in a closed loop.

Recently, the stability of time-delay linear and nonlinear
systems has been investigated based on the time-delay-dependent
approach (Han, 2008; He, Wang, Xie, & Lin, 2007; He, Wu, She,
& Liu, 2004; Xu & Lam, 2005) through the Lyapunov–Krasovskii
functional and the time-delay-independent approach (Cao, Sun, &
Cheng, 1998; He & Wu, 2003) through the Lyapunov–Razumikhin
functional. Based on the time-delay control system analysis
approach, the stability of sampled-data linear control systems was
investigated by transforming the sampled-data control system
as a continuous-time system with time-delayed control input
(Fridman, Seuret, & Richard, 2004; Hu, Bai, Shi, & Wu, 2007).
Followed by somematrix inequalities estimating the upper bounds
of the cross terms, stability conditions in terms of linear matrix
inequalities (LMIs) (Boyd, El Ghaoui, Feron, & Balakrishnan, 1994)
were obtained to guarantee the stability. A feasible solution of the
LMI stability conditions can be found numerically using convex
programming techniques.

In this paper, the stability of the sampled-data nonlinear sys-
tems is investigated based on the input delay approach (Fridman
et al., 2004). An output feedback sampled-data (OFSD) polynomial
controller is proposed for the control process. Compared to the full-
state feedback controller, the output-feedback control (Lo & Lin,
2003) is more challenging as only the system output is available
for feedback compensation. A sum-of-squares (SOS) approach is
employed to carry out the stability analysis. Stability conditions in
terms of SOS are derived based on the Lyapunov stability theory
to guarantee the stability and facilitate the control synthesis. The
SOS stability conditions can be solved numerically using the third-
partyMatlab toolbox SOSTOOLS (Prajna, Papachristodoulou, & Par-
rilo, 2002a), where the technical details of SOSTOOLS can be found
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in Prajna, Papachristodoulou, and Parrilo (2002b). The SOS tech-
niques (Papachristodoulou & Prajna, 2005) generalizing the LMI-
based approach were proposed by Prajna et al. (2002a). Instead of
constant matrices in LMIs, all decision variables are polynomials in
the SOS conditions.

Throughout this paper, the following notations are adopted
(Prajna, Papachristodoulou, & Wu, 2004). The monomial vector
x̂(t) in x(t) of which each element is defined as xd11 (t)xd22 (t) · · ·

xdMM (t) where di, i = 1, 2, . . . ,M , are nonnegative integers. The
degree of a monomial is defined as d =

∑M
i=1 di. A polynomial

p(x(t)) is defined as a finite linear combination of monomials with
real coefficients. A polynomial p(x(t)) is an SOS if it can be written
as

∑r
j=1 qj(x(t))2 where qj(x(t)) is a polynomial and r is a non-

zero positive integer. Hence, it can be seen that p(x(t)) ≥ 0 if it is
an SOS. It is stated in Papachristodoulou and Prajna (2005) that the
polynomial p(x(t)) being an SOS can be represented in the form of
x̂(t)TQx̂(t)whereQ is a positive semi-definitematrix. The problem
of finding a Q can be formulated as a semi-definite program (SDP).
The SOSTOOLS can be used to find numerically the matrix Q.
To investigate the stability of the control systems, the Lyapunov
function V (t) is considered. The nonlinear system, say ẋ(t) =

f(x(t)), is asymptotically stable when V̇ (t) =
∂V (t)
∂x(t) f(x(t)) < 0

for x(t) ≠ 0. It is found that the construction of V (t) formulated as
SOS conditions can be done using semidefinite programming.

This paper is organized as follows. In Section 2, the nonlinear
plant and an OFSD polynomial controller are introduced. In
Section 3, the stability of the sampled-data control systems is
investigated based on the Lyapunov stability theory. SOS stability
conditions are obtained to guarantee the system stability. In
Section 4, a simulation example is given to illustrate the merits
of the proposed output feedback sampled-data control scheme. In
Section 5, a conclusion is drawn.

2. Nonlinear plant and output-feedback sampled-data polyno-
mial controller

A sampled-data control system consisting of a nonlinear plant
and an OFSD polynomial controller connected in a closed loop is
considered.

2.1. Nonlinear plant

A class of nonlinear systems in the following form is considered.

ẋ(t) = A(x(t))x̂(x(t)) + B(x(t))u(t), (1)

y(t) = Cx̂(x(t)), (2)

where x(t) = [x1(t), x2(t), . . . , xn(t)]T is the system state vector,
A(x(t)) ∈ ℜ

n×N is the known system matrix, B(x(t)) ∈ ℜ
n×m is

the known input matrix, u(t) ∈ ℜ
m is the control input vector,

y(t) = [y1(t), y2(t), . . . , yl(t)]T is the output vector, C ∈ ℜ
l×N is

the constant system output matrix and x̂(x(t)) ∈ ℜ
N is a vector

with each entry as a unique monomial in x(t). It is assumed that
x̂(x(t)) = 0 iff x(t) = 0.

2.2. Output-feedback sampled-data polynomial controller

An OFSD polynomial controller is defined as follows,

u(t) = Gy(tγ )

= GCx̂(x(t − τs(t))), tγ ≤ t < tγ+1, γ = 1, 2, . . . ,∞ (3)

where G ∈ ℜ
m×l is a constant feedback gain to be determined,

tγ = γ hs denotes the sampling instant, hs = tγ+1 − tγ denotes the
constant sampling period, τs(t) = t − tγ < hs for tγ ≤ t < tγ+1.
It should be noted that the control signal u(t) = u(tγ ) is held
constant for tγ ≤ t < tγ+1.
Remark 1. The OFSD polynomial controller (3) becomes a full
state-feedback onewhen C is a full rankmatrix, for example, C = I,
where I is the identity matrix.

3. Stability analysis

In this section, the sampled-data control system formed by
the nonlinear plant (1) and the OFSD polynomial controller (3) is
investigated. From (1) and (3), we have

ẋ(t) = A(x(t))x̂(x(t)) + B(x(t))GCx̂(x(t − τs(t))). (4)

Definition 2 (Khalil, 2002). The equilibrium point x(t) = 0 of (4)
is asymptotically stable if it is stable and there exists δ such that
‖x(0)‖ < δ ⇒ limt→∞ x(t) = 0.

The stability of the sampled-data control system (4) is guaranteed
by the following theorem.

Theorem 3. The sampled-data control system (4), formed by the
nonlinear plant in the form of (1) and (2) and the OFSD polynomial
controller (3) connected in a closed loop, is guaranteed to be
asymptotically stable if there exist predefined constant sampling
period hs > 0, predefined constant scalars ε1, ε2, ξ , ς1 > 0 and
ς2 > 0, and the following decision variables, i.e., matrices M =

MT
∈ ℜ

N×N , N ∈ ℜ
m×l, X1 = XT

1 =


X11 0
0 X22


∈ ℜ

N×N , X11 =

XT
11 ∈ ℜ

l×l and X22 = XT
22 ∈ ℜ

(N−l)×(N−l), polynomial matrices
U(x(t)) = U(x(t))T ∈ ℜ

N×N and W(x(t)) = W(x(t))T ∈ ℜ
N×N ,

and polynomial scalar ς3(x(t)) > 0 such that the following SOS
conditions are satisfied.

r(t)T

X1 − ς1I


r(t) is SOS, (5)

r(t)T

M − ς2I


r(t) is SOS, (6)

−s(t)T

4̂(x(t)) + ς3(x(t))I


s(t) is SOS (7)

where r(t) ∈ ℜ
N and s(t) ∈ ℜ

4N are arbitrary vectors independent
of x(t),

4̂(x(t)) =

2(x(t)) + 2(x(t))T ∗ ∗

hs9(x(t))T −hsM ∗

hs8(x(t))T 0 −hs(2ξX1 − ξ 2M)

 ,

2(x(t)) =

[
211(x(t)) 212(x(t))
221(x(t)) 222(x(t))

]
,

211(x(t)) = Ã(x(t))X1 + ε1ϒ(x(t)) + (1 − ε1)U(x(t))T

+ (1 − ε1)ε1W(x(t))T ,

212(x(t)) = ε2ϒ(x(t)) + (1 − ε1)ε2W(x(t))T ,
221(x(t)) = −ε2U(x(t))T − ε1ε2W(x(t))T ,
222(x(t)) = −ε2

2W(x(t))T ,

ϒ(x(t)) = B̃(x(t))

N 0


,

8(x(t)) =

[
U(x(t)) + ε1W(x(t))

ε2W(x(t))

]
,

9(x(t)) =

[
91(x(t))
92(x(t))

]
,

91(x(t)) = X1Ã(x(t))T + ε1ϒ(x(t))T ,
92(x(t)) = ε2ϒ(x(t))T ,
Ã(x(t)) = 0−1H(x(t))A(x(t))0,

B̃(x(t)) = 0−1H(x(t))B(x(t)),
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H(x(t)) ∈ ℜ
N×n with its (i, j)-th entry defined asHij(x(t)) =

∂ x̂i(x(t))
∂xj(t)

,

i = 1, 2, . . . ,N; j = 1, 2, . . . , n, 0 =

CT (CCT )−1 ortc(CT )


and ortc(CT ) is the orthogonal complement of CT , and the feedback
gain of the sampled-data polynomial controller is defined as G =

NX−1
11 .

Proof. From (4), we have,

˙̂x(x(t)) =
∂ x̂(x(t))
∂x(t)

dx(t)
dt

= H(x(t))ẋ(t), (8)

where H(x(t)) is defined in Theorem 3. From (4) and (8), denoting
z(t) = 0−1x̂(x(t)) where 0 is defined in Theorem 3, we have,

ż(t) = 0−1 ˙̂x(x(t))

= 0−1H(x(t))

A(x(t))x̂(x(t)) + B(x(t))GCx̂(x(t − τs(t)))


= Ã(x(t))z(t) + B̃(x(t))GC0z(t − τs(t)), (9)

where Ã(x(t)) and B̃(x(t)) are defined in Theorem 3.
It can be seen that the stability of (9) implies that of (4). To

investigate the stability of (9), we consider the following Lyapunov
functional,

V (t) = z(t)TP1z(t) +

∫ 0

−hs

∫ t

t+σ

ż(ϕ)TRż(ϕ)dϕdσ (10)

where P1 = PT
1 ∈ ℜ

N×N , R = RT
∈ ℜ

N×N , P1 > 0 and R > 0. From

(9) and (10), denoting h(t) =


z(t)

z(t − τs(t))


, we have,

V̇ (t) = h(t)T (PTQ(x(t)) + Q(x(t))TP)h(t)

+ hsż(t)TRż(t) −

∫ t

t−hs
ż(ϕ)TRż(ϕ)dϕ (11)

where P =


P1 0
P2 P3


, P2 ∈ ℜ

N×N and P3 ∈ ℜ
N×N are arbitrary

matrices, and Q(x(t)) =


Ã(x(t)) B̃(x(t))GC0

0 0


.

To deal with the last term of (11), we consider the New-
ton–Leibniz rule and have

 t
t−τs(t)

ż(ϕ)dϕ = z(t) − z(t − τs(t)).
Then, the following inequality is considered to facilitate the stabil-
ity analysis.

2h(t)T
[
T(x(t))
V(x(t))

] 
−

∫ t

t−τs(t)
ż(ϕ)dϕ + z(t) − z(t − τs(t))


= 0

(12)

where T(x(t)) ∈ ℜ
N×N and V(x(t)) ∈ ℜ

N×N are arbitrary polyno-
mial matrices. Based on the fact that τs(t) = t − tγ < hs and with
(12), we consider the last term on the right hand side of (11) and
have

−

∫ t

t−hs
ż(ϕ)TRż(ϕ)dϕ ≤ −

∫ t

t−τs(t)
ż(ϕ)TRż(ϕ)dϕ

+ 2h(t)T
[
T(x(t))
V(x(t))

]
×


−

∫ t

t−τs(t)
ż(ϕ)dϕ + z(t) − z(t − τs(t))


≤ 2h(t)T

[
T(x(t))
V(x(t))

] 
z(t) − z(t − τs(t)


+ hsh(t)T

[
T(x(t))
V(x(t))

]
R−1

[
T(x(t))
V(x(t))

]T

h(t). (13)
From (11) and (13), we have

V̇ (t) ≤ h(t)T

PTQ(x(t)) + Q(x(t))TP + hs

[
T(x(t))
V(x(t))

]
×R−1

[
T(x(t))
V(x(t))

]T

+

[
T(x(t))
V(x(t))

] [
I

−I

]T

+

[
I

−I

] [
T(x(t))
V(x(t))

]T

h(t) + hsż(t)TRż(t). (14)

Denote X = P−1
=


X1 0
X2 X3


where X1 = XT

1 ∈ ℜ
N×N , X1 > 0,

X2 = ε1X1 ∈ ℜ
N×N , X3 = ε2X1 ∈ ℜ

N×N , ε1 and ε2 are constant
scalars to be determined. Denote M = R−1

∈ ℜ
N×N , U(x(t)) =

X1T(x(t))X1 ∈ ℜ
N×N , W(x(t)) = X1V(x(t))X1 ∈ ℜ

N×N , Z(t) =
Z1(t)
Z2(t)


= X−1


z(t)

z(t − τs(t))


and Ż1(t) = X−1

1 ż(t). From (9) and (14),
we have

V̇ (t) ≤ Z(t)T4(x(t))Z(t) (15)

where 4(x(t)) = 2(x(t)) + 2(x(t))T + hs8(x(t))X−1
1 MX−1

1 ×

8(x(t))T + hs9(x(t))M−19(x(t))T , and 2(x(t)), 8(x(t)) and
9(x(t)) are defined in Theorem 3.

To determine the feedback gain, as proposed in Lo and Lin
(2003), we choose

X1 =

[
X11 0
0 X22

]
, (16)

where X11 = XT
11 ∈ ℜ

l×l and X22 = XT
22 ∈ ℜ

(N−l)×(N−l). Further-
more, we have

C0 =

Il 0


(17)

where Il ∈ ℜ
l×l is the identity matrix. By expanding the terms in

(15), we have the term ϒ(x(t)) = B̃(x(t))GC0X1 which is nonlin-
ear in G and X1 such that SOSTOOLS is not able to find a feasible
solution numerically. To circumvent the problem, we choose the
feedback gain as G = NX−1

11 where N ∈ ℜ
m×l. From (17), we have,

ϒ(x(t)) = B̃(x(t))NX−1
11 C0X1

= B̃(x(t))NX−1
11


Il 0


X1

= B̃(x(t))

N 0


, (18)

which is linear in N appearing in 4(x(t)). It can be seen from (15)
that V̇ (t) < 0 when 4(x(t)) < 0 which implies the asymptotic
stability of the sampled-data closed-loop system (4). Considering
the inequality of (X1 − ξM)TM−1(X1 − ξM) ≥ 0 where ξ is a con-
stant scalar to be determined, we have

X1M−1X1 ≥ 2ξX1 − ξ 2M. (19)

By the Schur complement and with (19), 4(x(t)) < 0 is implied
by the following inequality,2(x(t)) + 2(x(t))T ∗ ∗

hs9(x(t))T −hsM ∗

hs8(x(t))T 0 −hs(2ξX1 − ξ 2M)

 < 0 (20)

where ‘‘*’’ denotes the transposed element at the corresponding
entry. It can be seen that the SOS conditions (5)–(7) imply X1 > 0,
M > 0 and the inequality of (20), respectively. This completes the
proof. �

Remark 4. It should be noted that the term X−1
1 MX−1

1 in (15) is
nonlinear in X1. From inequality (19), we have the terms at the
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bottom right of (20), which are linear in M and X1, respectively.
Consequently, SOSTOOLS can be applied to search for a feasible
solution.

Remark 5. The above stability analysis is valid when X =
X1 0
X2 X3


is invertible. It can be seen that if there exists a solution

to the SOS conditions (5) and (7), we have X1 > 0 and X3 > 0,
which are sufficient conditions to guarantee that the matrix X is
invertible.

Remark 6. It is not guaranteed that there exists a solution for
Theorem 3. One necessary condition for Theorem 3 to have a
solution is that the linearized model (1) at the origin is required
to be controllable.

Remark 7. It should be noted that increasing the dimension of
the system matrix and degree of monomials will increase the
number of decision variables in SOSTOOLS. As a result, SOSTOOLS
cannot solve the solutionnumericallywhen thenumber of decision
variables is over the limit due to running out of memory. Given by
an experiment, for a systemwith 7-by-7 systemmatrix, it is found
that it will reach the limit of SOSTOOLS with about 155 decision
variables.

Remark 8. For a given hs satisfying the SOS stability conditions in
Theorem 3, they also hold for any smaller sampling period.

4. Simulation example

A simulation example is given in this section to demonstrate
the design procedure and merits of the proposed sampled-data
control approach. Consider the nonlinear plant in the form of
(1) and (2) with A(x(t)) =


a(x(t)) 0.2 0

1 0.3 2 − x2(t)


, B(x(t)) =

1
2x2(t)


, a(x(t)) = −1 − 0.2(x1(t) − 2)2, C =


0 5 10


,

x(t) =

x1(t) x2(t)

T , x̂(x(t)) =

x1(t) x2(t) x2(t)2

Tand
0 =

[
0.0000 −0.4472 −0.8944
0.0400 0.8000 −0.4000
0.0800 −0.4000 0.2000

]
. With SOSTOOLS (Prajna et al.,

2002a), choosing hs = 0.002s, ε1 = 500, ε2 = 2000, ς1 =

ς2 = ς3 = 0.001 and ξ =
√
0.1, we found that the feedback

gain G = −0.6377, X1 =


0.1294 × 10−2 0

0 0.6678 × 10−3


and M =

0.7366 0.5576 × 10−4

0.5576 × 10−4 0.7366


which satisfy the SOS conditions in

Theorem 3. The OFSD controller (3) is employed to control the
nonlinear plant. The phase plot of x1(t) and x2(t) subject to various
initial conditions is shown in Fig. 1. The control signal of the OFSD
controller for the nonlinear system with the initial condition of
x(0) =


1 0

T is shown in Fig. 2. It can be seen from Fig. 1 that
the nonlinear plant can be stabilized successfully by the proposed
OFSD controller. Furthermore, it can be seen from Fig. 2 that the
control signal is a staircase function and with a constant level
during the sampling period.

5. Conclusion

The stability of the nonlinear sampled-data control system
consisting of a nonlinear plant and an output-feedback sampled-
data (OFSD) polynomial controller has been investigated. The
proposed OFSD polynomial controller uses the system output for
feedback compensation. Due to the zero order hold, the control
signal is kept constant during the sampling period. Consequently,
the proposedOFSD polynomial controller can be implemented by a
microcontroller or a digital computer to lower the implementation
cost and time. Stability conditions in terms of sum of squares have
been obtained based on the Lyapunov stability theory to aid the
design of the OFSD polynomial controller. A simulation example
Fig. 1. Phase plot of x1(t) and x2(t).

Fig. 2. Control signal u(t).

has been given to illustrate the merits of the proposed control
scheme.
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