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Theory, experiment, and observation suggest that biochemical networks which are conserved
across species are robust to variations in concentrations and kinetic parameters. Here, we
exploit this expectation to propose an approach to model building and selection. We
represent a model as a mapping from parameter space to behavior space, and utilize
bifurcation analysis to study the robustness of each region of steady-state behavior to
parameter variations. The hypothesis that potential errors in models will result in parameter
sensitivities is tested by analysis of two models of the biochemical oscillator underlying the
Xenopus cell cycle. Our analysis successfully identifies known weaknesses in the older model
and suggests areas for further investigation in the more recent, more plausible model. It also
correctly highlights why the more recent model is more plausible.

r 2002 Elsevier Science Ltd. All rights reserved.
Introduction

In recent years, a series of landmark papers have
reported the existence of robust behaviors in a
variety of biochemical networks (Alon et al.,
1999; von Dassow et al., 2000; Yi et al., 2000;
Kurata & Taira, 2000). Indeed, robustness in
metabolism (Fell, 1997), the cell cycle (Borisuk &
Tyson, 1998), and inter-cellular signaling (Free-
man, 2000) is now widely accepted. Of course,
nothing can be robust to absolutely all varia-
tions. Some variations may not matter in terms
*Author to whom correspondence should be addressed.
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of the functionality of the system in question.
For example, the process that specifies the
geometric relationship between hair follicles on
human heads need not be very exact or robust.
Nor is there any guarantee that all biological
systems are necessarily optimally organized. A
well-known example of this is the apparently
inverted layered structure of the human retina.
In this paper, we are interested in robustness
to variations in kinetic parameters. That bio-
chemical networks will exhibit robustness to
variations in their kinetic parameters was theo-
retically predicted long ago (Savageau, 1972;
Kacser & Burns, 1973). However, these issues
r 2002 Elsevier Science Ltd. All rights reserved.
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have recently received more widespread atten-
tion (Dearden & Akam, 2000; Hartwell et al.,
1999) due to the growing need to understand the
large volumes of data produced by the emerging
biotechnologies.

While we tend to think primarily of function-
ally distinct cellular processes such as metabo-
lism, or the cell cycle, the reality is that all
cellular processes are highly interrelated and
involve not only biochemical interactions, but
also mechanical, electrophysiological, and other
interdependencies across multiple time and space
scales. Nonetheless, ‘‘if we are to comprehend
[molecular biology], we must hope that it can be
dissected into a series of modules or networks
which can be studied in relative isolation’’
(Dearden & Akam, 2000).

Recent discoveries of modular interspecies
conserved networks suggest that such hope
may not be in vain. For instance, the Inter-
activeFly database (http://sdb.bio.purdue.edu/
fly/aimain/aadevinx.html) currently lists 36 con-
served developmental pathways. The fact that
such networks perform homologous functions
with similar but differing proteins (hence differ-
ent reaction rates) and in different cellular
contexts (hence different total concentrations of
chemical species) suggests functional robustness
to such variations.

The chemical oscillator underlying the control
of cleavage-stage cell divisions in Xenopus
embryos is a well-known example of a robust
biochemical module: its component proteins can
be replaced by proteins from other species (e.g.
human) without affecting its function, and its
oscillatory behavior can be reproduced in vitro
(Murray & Hunt, 1993). In this paper, we
compare two models of the Xenopus cell cycle
oscillator to evaluate the feasibility of using
robustness as a means of identifying potential
weaknesses in models. Our approach extends the
use of bifurcation analysis for model evaluation
by Ringland (1991) and Clarke (1980, 1994) to
include observations about the shape, smooth-
ness, and other features of behavior regions in
parameter space. The results suggest that the
approach can help with iterative development of
increasingly detailed models of cellular processes,
and selection between alternative explanations
(models) of experimentally observed phenomena.
What Should Biochemical Networks
be Robust to?

It would be impractical and undesirable for
systems to be equally robust to everything. For
example, a system should be sensitive to parti-
cular types of variation in its inputs, otherwise, it
would not respond to anything! On the other
hand, there is also no reason to believe that all
cellular processes will be optimally robust to
everything. In this section, we delineate where
one can expect robustness or sensitivity and
discuss the implications.

To begin, we define a biochemical model as a
mapping from parameter space to behavior
space. The structure of a network is given by
the set of all non-zero elements in its stoichio-
metry matrix (i.e. the set of interactions in the
network). The parameters define reaction ki-
netics and total (initial) concentrations of the
chemical species constituting the modeled net-
work. Two types of parameters may be noted:

(A) Parameters whose values vary during the
lifetime of an individual (e.g. temperature,
regulated gene activity level, or amount of a
protein in a particular state).

(B) Parameters that are constant for indivi-
duals, but variable across individuals/species
(e.g. reaction rate constants (Kcat; KM ), initial/
total concentrations).

Any ‘‘parameter’’ that does not vary across
individuals or across species is considered a
constant here. Inputs are parameters that con-
trol the system state trajectory. The inputs to a
network can be type A or type B parameters.
Sensitivity to type A inputs is useful for
behavioral adaptation, while sensitivity to type
B inputs can generate diversity in populations
without loss of function.

Carison & Doyle (2000) have proposed that
robustness to common variations is achieved
at the cost of added system complexity. The
additional complexity will generally incur
some new sensitivities. Optimally robust systems
are those that achieve a useful balance be-
tween robustness to frequent variations and
the concomitant sensitivity to some rare events.
A corollary of this view is that natural
systems tend to be highly robust to frequently
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occurring variations and, in counterbalance,
fall catastrophically when some rare variations
occur. We exploit this observation to say that
if a model of a robust system (e.g. a con-
served biochemical network) exhibits sen-
sitivity to a parameter p; one of the following
must hold (see also Alves & Savageau,
2000a, b):

(1) p is a control input; in that case the
model should be sensitive to p: The type of
sensitivity will depend on the functionality of
the modeled network. Systems that switch
between a finite number of states tend to be
sensitive to the level of inputs, but not the
exact value of any input. On the other hand,
systems with continuous outputs (e.g. an ampli-
fier) tend to be sensitive to the exact value of
the input(s).

(2) p is regulated (held constant) elsewhere in
the system. A familiar example from engineering
is power supply provision in electronic circuits:
sub-circuits depend critically on receiving a
supply voltage held constant by dedicated
circuitry. An analogous biochemical example
may be the provision of metabolic ‘‘services’’ in
cells.

(3) p is not regulated, but the system as
a whole is insensitive to p (e.g. soot buildup in
a heater will tend to affect heater performance,
but not room temperature). In that case, the
modeled network is actually a part of a larger
system and should be studied in this larger
context.

(4) We have misunderstood the function of the
network. For example, suppose a system is
designed to provide pressure and temperature
compensation signals to other systems on an
aircraft. We might model the network as only a
pressure compensator, and then discover that it
is also sensitive to temperature. In such a case, it
is not that our model of pressure compensation
is wrong, but rather that we have misunderstood
the full function of the system.

(5) The model structure is incorrect (e.g. there
may be missing components, or incorrect inter-
actions between existing components).

It is often possible to guess whether a model
parameter may be a control input from the
nature of the processes it controls. For example,
the rate of transcription of a gene, the rate of
synthesis of a protein, and the initial concentra-
tion of a maternally inherited factor are all
parameters which are often controlled by up-
stream biochemical processes and which can
usefully control processes such as developmental
cell fate specification.

On the other hand, enzyme-mediated reaction
rates vary widely among individuals and species
(Eanes, 1999), so any biochemical network
whose function is conserved across individuals
and species may be expected to be highly robust
to variations in reaction rates. Similarly, varia-
tions in total concentrations of locally synthe-
sized chemical species should not affect the
behavior of a structurally correct model drama-
tically.

When a biochemical model exhibits sensitivity
to some of its parameters, one of conditions (1)–
(5) above must hold. One may then investigate
each possibility in turn. However, sensitivity and
robustness are not ‘‘all or none’’, binary
characteristics. Below, we define quantitative
measures that allow more exact characterization
of the type and extent of sensitivity/robustness
exhibited. This greater resolution in turn pro-
vides greater insight into the potential cause of
the observed sensitivity, as illustrated by our
example analysis of models of the Xenopus cell
cycle.

Measuring Robustness and Sensitivity

Consider an example system with only two
parameters P1 and P2: Suppose the system has a
steady state which can be characterized by a
single variable, say a concentration level, or an
oscillation frequency. Two-parameter bifurca-
tion plots delineate the range of P1 and P2 for
which the system exhibits the measurable beha-
vior. Figure 1 shows two example behavior loci
for such a system. The figure is drawn such that
the colored regions in (a) and (b) are roughly
equal in area. The crosses represent example
operating points, that is, the mapping from the
particular values of P1 and P2 to a particular
value for the measurable system characteristic.
The arrows show the effect of example variations
(noise) in P1 on the location of the operating



Fig. 1. Schematic representation of two example behavior loci.
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point. The model in (a) has two important
features:

(1) Define the minimum distance between an
operating point and the boundary of the
behavior locus as the stability margin (SM) of
the operating point. The optimum stability
margin (OSM) of the model is then defined as
the maximum stability margin achievable by
judicious placement of the operating point. The
OSM is greater for the convex locus in (a) than
for the concave locus in (b). Moreover, the sum
of all stability margins is greater for (a) than for
(b). Therefore, the model exhibiting character-
istic (a) has greater overall stability than the
model exhibiting characteristic (b).

(2) For the particular drawings in this
example, we note that the rate of change of the
measured characteristic with changes in P2 is
lower in (a) than in parts of (b). Which of the
two models is more plausible depends on
the extent of behavioral variability observed
experimentally.

Where a modeled system exhibits multiple
steady state behaviors, there will be one or more
loci for each behavior in parameter space and it
would be necessary to consider issues such as (1)
and (2) (above) for each locus. Often, the
multiple behaviors exhibited by a model border
each other. Clearly, in such cases convexity of
one region would imply concavity in the
neighboring region(s). In such cases (as for
example in the cell cycle models below), opti-
mum robustness for all model behaviors requires
that the boundaries between behavioral regions
in parameter space be flat (i.e. neither concave
nor convex). The boundaries between neighbor-
ing behavior regions are parameter bifurcation
loci and can be computed and plotted in two-
dimensional slices for visual assessment. For
examples, see our cell cycle oscillator analysis
below.

For parameters acting as state switch (control)
inputs, once a system has switched states, it
should be robust to small variations (‘‘noise’’) in
the input signals, i.e., we require large stability
margins for each switched state. Finally, we use
Ockham’s Razor to distinguish between any two
models which may match experimental observa-
tions equally well: the model with the greatest
parameter robustnessFas defined by the above
considerationsFis the more plausible!

In the remainder of this paper, we explore the
above ideas by applying them to two well-known
models. Where Ringland (1991) and Clarke
(1980, 1994) used bifurcation analysis to obtain
models capable of exhibiting experimentally
observed steady-state behaviors, we start with
models that meet steady-state experimental
observations in some qualitative manner (in the
examples below, both models produce two cell
cycle arrest states and an oscillatory state whose
frequency is close to observations). We analyse
and compare models on the basis of the size,
shape and degree of variability within each
steady-state behavior region.

Case Study: The Xenopus Cell Cycle Oscillator

To illustrate and demonstrate the above
concepts, we use two models of the cell cycle
oscillator that regulates cleavage in early Xeno-
pus embryos (Tyson, 1991; Marlovits et al.,
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1998). Both models were developed by Tyson
and colleagues, and replicate the wild-type in

vivo and in vitro oscillatory behavior and arrest
states well. Indeed, at this superficial level they
are not distinguishable. The earlier model was
essentially theoretical (Tyson, 1991). Its struc-
ture is abstract and some interactions within it
do not correspond to specific chemical reactions.
It was written before experimental data on the
structure and kinetics of the system were
available. The later model has experimentally
validated structure; most of its kinetic para-
meters have experimentally measured values,
and correctly predict the phenotypes of a large
range of experimental interventions (Marlovits
et al., 1998). With the benefit of hindsight, the
limitations of the older model are known. We
compare the dynamics of the two models to
demonstrate the manner in which robustness
analysis can highlight important systematic
differences between structurally correct and
incorrect models.

WHY USE THE CELL CYCLE AS OUR EXAMPLE

CASE STUDY?

The cell cycle oscillator is highly conserved in
all eukaryotes (Murray & Hunt, 1993), so there
is good reason to believe it is robust to small
mutations. There are several additional reasons
for our choice.
Fig. 2. Schematic representation of some of the major eve
eggs and embryos. Note the role of the MAP-kinase-mediate
oscillations) until after fertilization (see text for further descri
(1) The basic dynamics observed in vivo in
Xenopus embryos can also be reproduced
in vitro using cytoplasmic extracts. There is also
no growth during cleavage stages, so growth-
directed control of the cell cycle, or other
unknown cellular processes are not necessary
to explain the fundamental features of the
Xenopus cell cycle oscillator.

(2) Xenopus eggs are large and the embryos
lend themselves well to experimental analysis.
There is therefore a wealth of experimental
evidence used by Tyson and colleagues to ensure
the plausibility of the more recent structurally
detailed model.

(3) Known defects in the earlier model have
been experimentally pinpointed.

(4) Analytic solutions of the parameter space
are obtainable for the simpler earlier model.

(5) In an extensive study, Borisuk (1997) and
Borisuk & Tyson (1998) fully characterized the
multidimensional parameter space of the later,
more complex model, thus providing unique
insights into its behavior as a mapping from
parameter space.

OVERVIEW OF THE TWO MODELS

Figure 2 presents an overview of the behavior
of cell cycle determinants in Xenopus eggs
and embryos. The concentration of an active
form of a cyclin–CDC2 dimerFknown as the
nts and mechanisms underlying cellular division in Xenopus
d pathway that blocks active MPF degradation (and hence
ption).



Fig. 3. Schematic representations of the ’91 and ’98
models of the Xenopus cell cycle oscillator proposed by
Tyson and colleagues. Both models share a basic reaction
loop in which cyclin dimerization with CDC2 is followed by
a series of phosphorylation/dephosphorylation events. (a)
The ’91 model: at that time, details of the (de)pho-
sphorylation events were not known and were hypothe-
sized. Moreover, the mechanism underlying the positive
feedback of active MPF (gray-filled dimer) on its own
production was not known and was only modeled
phenomenologically. k1 is the rate of cyclin synthesis. The
rate of active MPF formation is modeled as the sum of two
components: k4 is the high rate of active MPF formation
proportional to active MPF concentration. k04 is the low
rate of active MPF production proportional to inactive
MPF concentration. k6 is the rate of dimer breakdown. (b)
The ’98 model: the dimerization and (de)phosphorylation
sequence of events have been corrected and the single
positive feedback effect of MPF on itself has been replaced
by three feedback mechanisms (dotted arrows) each of
which is modeled as a set of detailed molecular interactions
(see Fig. 10 for details), k1; V 00

25; and V 00
2 correspond to

k1; k4 and k6; respectively, in the ’91 model.
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maturation promoting factor (MPF)Fcontrols
cell division activity. The regulation of active
MPF concentration is the subject of the two
models studied here. Prior to fertilization, active
MPF levels are arrested at low concentration in
immature eggs and at high concentration in
mature eggs. At fertilization, after an initial delay,
a series of 12 equal-period, synchronous cell
divisions ensue. Thus the system has three steady-
state behaviors: low MPF arrest, high MPF
arrest, and oscillations in MPF concentration.

Figure 3(a) and (b) are schematic representa-
tions of the two models. Both models are based
on a cyclic set of reactions involving cyclin–
CDC2 dimerization, followed by phosphoryla-
tion/dephosphorylatlon and a positive feedback
loop which creates hysteretic dynamics. How-
ever, the models are otherwise different. In
particular, the positive feedback on active MPF
is modeled phenomenologically in the ’91 model.
In the ’98 model, on the other hand, the positive
feedback loop is defined in terms of a set of
specific molecular interactions discussed later
and shown in Fig. 10. In addition, the ’98 model
includes another feedback loop through which
active MPF promotes its own degradation. Both
of these added structures turn out to have a
significant impact on the robustness of the
network behavior as discussed below.

CHARACTERISTICS OF THE ’91 MODEL

The full ’91 model requires six equations and
10 kinetic parameters. But as Tyson showed in
1991, to a good approximation, the model can be
reduced to two equations and four kinetic
parameters. As illustrated in Fig. 4, the system
has three operating regimes corresponding to cell
cycle arrests in immature and mature eggs (low
and high MPF levels, respectively), and an
oscillatory regime corresponding to the cleavage
cycles in early embryos. The bifurcation loci
between the three behavioral regions can be
characterized analytically (see u8 formulae in
Fig. 4). Figure 5(a) and (b) show the variations
in the shape and size of these three operating
regions as a function of the values of the four
kinetic parameters of the system. The surfaces at
the boundaries between these regions represent
bifurcation loci in parameter space.
Because the reduced ’91 model has only four
kinetic parameters and is amenable to analytic
exploration, we were able to exhaustively plot its
behavior in parameter space. As the example in
Fig. 5(a) illustrates, the model’s three regions of



Fig. 4. Overview of the reduced, two-equation
version of the ’91 model. (a) The two-equation, four-
parameter model. (b) Phase portrait of the two-equation
model. The v nullcline is a vertical line whose location
is given by parameters k1 and k6: The u and v nullclines
cross only once, giving a single steady state that is
either stable (cell cycle arrest states to the left and right
of the maximum and minimum of the u nullcline), or
unstable (oscillations corresponding to repeated embryonic
cell divisions, region between the arrest regions).
The loci of the boundaries between these three behavioral
regions can be derived analytically from the nullcline
equations and are shown below. This allows exhau-
stive characterization of the model behavior as a
function of its four kinetic parameters (see Figs 5 and 6
and text).

Fig. 5. Two-parameter plots showing the regions in
behavior of the model. (a) The region between the two c
the area left of this corresponds to the high active-MPF arr
low active-MPF arrest state of immature eggs. (b) The orie
characteristics in (a) are typical of all other plots: three approxi
would be expected for optimal robustness to parameter varia
behavior on k1:
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steady-state behavior in any two-parameter
plot are broad regions with approximately flat
boundaries indicating robustness to parameter
variations. This is not true for plots involving the
rate of cyclin synthesis (k1). For example, the
k4–k1 plot in Fig. 5(b) shows that the system
behavior depends critically on the value of k1:
Note how changing the value of k4 affects the
choice of k1 for which the system is in any one
particular steady state (seen most readily in the
sharp curvature of the boundaries of the
oscillating region).

The observation that the system is sensitive to
k1 is not surprising: the oscillatory behavior of
the system can be shown to depend on the
steady-state concentration of cyclin, which in
turn depends on k1 and k6: In vivo, control of
cyclin concentration is achieved through a dual
control mechanism consisting of (a) the regula-
tion of cyclin synthesis and (b) the activity of a
MAP-kinase-mediated pathway which acts as a
binary switch, blocking active-MPF (and hence
cyclin) degradation until after fertilization (see
Ferrell Jr & Machleder, 1998 and Fig. 2 of this
paper). Ferrell Jr et al. (1991) and Groisman
et al. (2000) discuss experimental evidence of the
role of cyclin synthesis in the control of the cell
cycle. Therefore, we focus on sensitivity to k1
rather than k6:

The rate of cyclin synthesis also exerts a strong
control on the size of the three regions. With
parameter space corresponding to each steady-state
urves corresponds to repeated cell divisions in embryos,
est state of mature eggs, and the right hand region to the
ntation is reversed. Except for k4–k1 plots, as in (b), the
mately equal regions separated by roughly flat boundaries, as
tion, (b) demonstrates the nonlinear dependence of system



Fig. 6. The effect of varying k1 on the shape of the model behavior regions in parameter space suggests that the rate of
cyclin synthesis may be a state control input for the cell cycle oscillator. (a) For low values of k1; the region to the right
of both planes (low active-MPF immature-egg arrest) occupies most of the volume of the parameter space. So when k1 (rate
of cyclin synthesis) is low, immature egg cell cycle arrest is highly robust to variations (noise) in the values of the other
system parameters (k4; k04; k6). (b) For intermediate values of k1 (here 0.1), the oscillatory region dominates the parameter
space and oscillatory behavior is highly robust to changes in the other system parameters. (c) As k1 is increased further, the
size of the region corresponding to high active-MPF mature-egg cell cycle arrest grows. (d) For high values of k1; the region
corresponding to high active-MPF mature-egg cell cycle arrest dominates the parameter space. A cell in this state would be
highly robust to variations in the other system parameters.
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high values of k1FFig. 6(d)Fthe arrest state for
mature eggs dominates. So long as k1 is high, the
system is highly robust to variations in the values
of the other three parameters. At the opposite
extreme, when k1 is smallFFig. 6(a)Fthe size of
the regime corresponding to cell cycle arrest in
immature eggs is by far the biggest. So with k1
very small, the immature egg cell cycle arrest
state is very robust to variations in the other
three kinetic parameters. As the value of k1 is
varied from very low to very high, we see that the
size of the middle region (cleavage oscillations)
first growsFFig. 6(b)Fand then shrinks
againFFig. 6(c). Figure 6(b) shows an example
value for k1 that results in a very wide oscillatory
region occupying most of the parameter space.
So with this value, the cell undergoes cleavage
oscillations in a manner highly robust to
variations in the other three parameters.

It is now known that the Xenopus egg inherits
large amounts of maternal cyclin that enables
the two meiotic divisions of the egg prior to
fertilization. Mitotic oscillations prior to fertili-
zation are prevented by a MAP-kinase-mediated
biochemical switch (see the cartoon illustration
in Fig. 2 and Ferrell Jr & Machleder, 1998). The
sensitivity of the ’91 model’s behavior to k1
reveals the role of k1 as a control input for the
mitotic oscillator, acting to generate the capacity
for oscillations which are later triggered by
fertilization (the biological case for control of
the embryonic cell cycle by cyclin synthesis was
first put forward by Murray & Kirschner (1989)
and Murray et al. (1989). The nonlinear (k4-
related) dependence of the system behavior on k1
reveals a weakness in the model: the state of the
system cannot be predicted from the value of the
control input (k1) alone.

Note that in Fig. 6, k4 ranges from 0 to 1000.
To be comparable to the experimentally mea-
sured values of the corresponding parameters
used in the ’98 model, k4 should be limited
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to o10: However, if we limit the value of k4 to
this smaller range, the robust model behavior
observed in Fig. 6 can only be replicated if k1 is
increased to values beyond its plausible range
(here taken as nominal 7 one order of
magnitude). Thus, with the benefit of hindsight,
we note that the structural weakness of a single
(phenomenological) feedback loop in the ’91
model results in a need for unfeasibly large
parameter ranges in the model.

Figure 7 is a plot of the oscillation frequency
of the model as a function of parameters k1 and
k4: As expected, the oscillation frequency is zero
in the dark-blue regions corresponding to the
two cell cycle arrest states discussed above (low-
MPF immature-egg arrest to the left, high-MPF
mature-egg arrest to the right). In the region in
between these, the value of k1 determines the
cleavage oscillation frequency. The values of the
other parameters are set to those recommended
in Tyson (1991). The period of the resulting
oscillations ranges from 10 to 50 min: The in vivo

period for Xenopus cleavage cycles is 30 min
(Masui & Wang, 1998). The in vitro period is
around 60 minutes (Murray & Hunt, 1993). So
the model includes the observed in vivo and
in vitro behaviors, but its exact oscillation period
varies with changes in k1: Since k1Fthe protein
synthesis rateFcannot be controlled very tightly
in vivo, this sensitivity suggests that the model
has structural deficiencies.

It is possible to optimize the model parameters
to constrain the frequency range of the oscilla-
Fig. 8. The effect of varying k1 on the size and shape of the
nearly vertical surfaces separating the regions are close to the i
parameters. Compared to the corresponding characteristics in
thus offering greater robustness. The values of k1 are (a) 1.0,
tory region. However, in this case the oscillatory
region becomes very narrow and the sensitivity
of the model to k1 variations is even more
pronounced. As we show below, the ’98 model
does not suffer from this problem.

CHARACTERISTICS OF THE ’98 MODEL

The full ’98 model is represented by nine
differential equations and 26 kinetic parameters.
It is clearly far too complicated to study
analytically. We used the numerical bifurcation
analysis tool AUTO (Doedel, 1981) to charac-
terize this model in the same manner as the ’91
model. Based on the earlier results of Borisuk
& Tyson (1998), we knew that the model
has robustness characteristics similar to the ’91
model, and that k1 continues to control system
state. Figure 8(a) and (b) illustrate this point. In
Fig. 8(a), k1 is set to a high value (corresponding
to large amounts of maternal cyclin being
present in the egg in which the degradation of
cyclin is blocked by the MAP kinase pathway)
and we see that virtually all of the plausible
parameter space (the volume to the left of the
plotted surface) is taken up by the region
corresponding to high-MPF cell cycle arrest in
mature eggs. In Fig. 8(b), k1 is reduced to 0.01
(corresponding to fertilized eggs, where the
MAP kinase pathway is disabled and maternal
cyclin has been degraded), and we see that now
the same volume in parameter space represents
oscillatory behavior (the volume between the
behavior regions in the ’98 model parameter space. The flat,
deal for optimum robustness to variations in the other system
the ’91 model (Fig. 6), the ’98 regions are also much larger,
and (b) 0.01, respectively.



Fig. 10. Details of the additional reactions included in
the ’98 model. (a) The push–pull positive feedback
mechanisms replacing the simple phenomenological feed-
back of active-MPF on itself in the ’91 model. The CDC25
path enhances the rate of active-MPF production while the
wee1 path reduces the rate of return of active-MPF (gray-
filled dimer) to inactive form. (b) The feedback mechanism
of active-MPF on its own degradation. APC is the
anaphase promoting factor, and its role in active MPF
degradation has been experimentally verified. But inter-
mediate enzyme (IE) has not been experimentally identified
and its interactions represent only an abstract path.
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two surfaces). Note that the above state control
characteristic of k1 is highly robust to variations
in other kinetic parameters: changes in V 00

25; V 0
25;

and V 00
2 (corresponding to k4; k04 and k6 in the ’91

model, respectively, see Fig. 3) have virtually no
effect on this behavior.

A critical difference between the ’91 and ’98
models is that the period of oscillations is much
less variable in the ’98 model. In the latter, the
value of k1 determines whether the system
oscillates. However, the period of oscillations
is fixed by the combination of the values of the
other parameters in the system. Since these
parameters would be expected to be constant
in any individual, the cleavage period would
be fixed and not vary with small fluctuations
in the regulated value of k1: In a sense, k1
control behaves like a multi-level switch. Its
value is interpreted in three discrete levels: low,
medium and high. These in turn determine the
mode of operation of the cell cycle engine. In
comparison with the ’91 model, the ’98 model is
not only less sensitive to parameters other than
k1; but also operates with greater stability
margins on k1:

As shown in Fig. 9, the parameter values of
the ’98 modelFwhich are based on in vitro
experimental measurementsFresult in 45–
50 min period oscillations similar to in vitro

preparations. Note, however, the existence of a
triangular region of frequency instability where
k1 is small. Moreover, the range of k1 values for
which the system oscillates seemed surprisingly
small to us. On further investigation, we found
that the positive feedback loop through which
MPF facilitates its own degradation (shown in
Fig. 10(b)) is not experimentally specified. More-
over, Tyson and colleagues did not optimize the
parameters of these reactions for any particular
behavior, but rather used nominal values. As
shown in Fig. 11, optimizing these unknown
parameters for oscillation periods in the in vitro

range dramatically improves the robustness
characteristics of the ’98 model. The oscillatory
region is now much wider than that of the ’91
model. The oscillation period is remarkably
constant, and k1 control of cell state no longer
depends on co-variation with other rates (V 00

25

in the ’98 model corresponds to k4 in the
’91 model). Thus, robustness analysis of the
’98 model not only highlighted a potential
weakness in the model, but also pinpointed
where the problem may lie and allowed us to
remedy it.

Although we have shown that the structure of
the ’98 model is capable of providing highly
robust oscillatory behavior in a manner far
exceeding the capabilities of the ’91 model, it
cannot be assumed that the ’98 model is a
complete representation of all the pertinent
interactions constituting the Xenopus cell cycle
oscillator. The structure of the ’98 model is
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clearly more plausible than the ’91 model, but it
could be further optimized. For example, Fig. 12
shows that increasing the autocatalytic rate of
active MPF degradation can enlarge the oscilla-
tory region of the model considerably. The
structure of the ’98 model ensures that the
expanded oscillatory region has a very stable
period (in Fig. 12 optimized to lie in the range 28
to 30 minutes corresponding to in vivo oscilla-
tions). Moreover, there is no co-dependence on
parameters other than k1: Experimental data
only put a lower bound on the value of the
parameter optimized here (V 00

2 ). The exact in vivo

value is not known. Nor is it significant for our
purposes. The important observation here is that
more detailed modeling of this particular part of
the model may be illuminating.

Discussion and Conclusions

Model building necessarily involves making
choices between alternative explanations with
apparently equivalent behaviors. We put for-
ward an argument from first principles suggest-
ing that robustness analysis can help distinguish
between more and less plausible models, and
pinpoint structural weaknesses in models. The
proposal is predicated on the expectation that
essential cellular processes that are conserved
across multiple species must be functionally
robust to mutational variations. Our analysis
of two models of the Xenopus cell cycle
oscillator confirms this theoretical expectation,
but further examples are needed.

Our choice of models for this paper was highly
serendipitous. The parameter space of the more
complex ’98 model had already been mapped in
great detail by Borisuk (1997). We could thus
concentrate on comparing the two models rather
than characterizing each in detail first. Efficient
characterization of the parameter space of
models with tens of parameters is a significant
remaining challenge. Recently, fairly general
relaxation methods that exploit linear matrix
inequalities to simplify the searching of
multi-dimensional spaces have been developed
(Parrilo, 2000). We hope to exploit these
developments to facilitate characterization and
parameter searching in future applications of our
approach to model building and validation.
Methods

The analytical solution of the parameter space
for the two-equation version of the 1991 model
was derived using Waterloo Maple (http://
www.maplesoft.com/). All other numerical char-
acterizations of the parameter spaces of the two
models were performed using the AUTO bifur-
cation analysis package (http://indy.cs.concor-
dia.ca/auto/main.html). The frequency contour
plots were generated as co-dimension two-
bifurcation plots on which the frequency of
oscillation was superimposed post hoc. Oscilla-
tion frequencies were calculated by sampling the
oscillatory region of each plot in a 100� 100 or
a 50� 50 grid, grouping the results into bins,
and then using the AUTO to trace the loci of
each frequency bin. Numerical parameter opti-
mizations were carried out interactively using
Berkeley Madonna (http://www.berkeleymadon-
na.com/).

We are grateful to Drs John Tyson and Kathy
Chen for much help and advice and to Drs Baltazar
Aguda, Maria Schilstra, and Herbert Sauro for
helpful critical reviews of the manuscript.
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Fig. 7. Contour plot of the frequency of cleavage
oscillations in the ’91 model. According to this model, the
cleavage period would vary between 10 and 50 min from
individual to individual, even when all ‘‘environmental
conditions’’ are held constant. This contradicts experimen-
tal observations of a stereotypic cell division period in
Xenopus embryos.

Fig. 9. Cleavage frequency contour plot using the
Mariovits et al. parameter values for the ’98 model. Note
that the oscillatory region is very narrow, but has the
advantage of a much more stable oscillation period range
(45–50 min) in most of the oscillatory region. The dashed
horizontal line indicates the experimentally derived value of
V 00
25 used by Mariovits et al. In this region of the parameter

space, the oscillation period ranges from 50 down to
10 min; thus negating the apparent greater stability of the
’98 model.

Fig. 11. The ’98 model optimized to give in vitro like
oscillations. The period is highly stable across the whole
region, ranging between 45 and 65 min: Note also the
nearly vertical boundaries of the oscillatory region: k1 can
control state transition without codependence on other
parameters (V 00

25 plotted, but similar for others). The width
of the oscillatory region (and hence the operational stability
margin) is also considerably wider than for the ’91 model.
The IE-related parameters for which experimental data
were not available and have been optimized here are:
kle ¼ 1:2; kmie ¼ 0:006; kier ¼ 0:7; kmier ¼ 0:001; kmap ¼ 1;
kapr ¼ 0:11; kmapr ¼ 4 (symbols correspond to the notation
of (25)).

Fig. 12. The ’98 model optimized to give robust in vivo
like oscillations. This particular plot was obtained by
simply increasing V 00

2 Fthe fast rate of degradation of
active-MPF by APCFto 1:5 min�1: V 00

2 corresponds to k6
in the ’91 model. As shown in Fig. 4(d), increasing k6 has a
similar effect on the ’91 model. But whereas in the ’91
model the period of oscillations varies widely across the
region, in the optimized ’98 model the period is highly
stable in the range 28–30 min: Note that the Marlovits et al.
choice of V 00

2 ¼ 0:25 min�1 was based on experimental
evidence that suggests a lower limit on V 00

2 but no specific
upper limit.
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