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1 Abstract 

This paper presents an iterative algorithm to compute lower bounds 
for the structured singular value. The algorithm resembles a mixture 
of power methods for eigenvalues and singular values, which is not 
surprizing, since the structured singular value can be viewed as a gen- 
eralization of both. If the algorithm converges, a lower bound for p 
results. We prove that p is always an equilibrium point of the algo- 
rithm, however, since in general there are many equilibrium points, 
some heuristic ideas t o  achieve convergence are presented. Extensive 
numerical experience with the algorithm is discussed. 

2 Introduction 

The structured singular value, p, is a useful tool for matrix pertur- 
bation problems, [Doy]. Computation of p is difficult, and usually, 
upper and lower bounds are all that can be reliably computed. Upper 
bounds give conservative estimates of the sizes of allowable perturba- 
tions, while lower bounds yield “problem perturbations”. In [FanT], 
the calculation of p is reformulated as a smooth optimization problem. 
As with all of the known exact expressions for /I, the function to  be 
maximized has local maximums which are not global, so in general 
the method yields only lower bounds for p. Similar comments can 
be made for the ideas in [Doy] and [Hell, as well as the algorithm in 
this paper. The contribution here is yet another lower bound algo- 
rithm t o  aid in the analysis of robustness of systems with structured 
uncertainty. 

3 Definitions 

We consider matrices M E Cnxn. d ( M )  and p ( M )  respectively de- 
note the mazimum singular value and the spectral radius of M .  M’ 
denotes the complex conjugate transpose of M .  
In the definition of p ( M ) ,  there is an underlying structure A ,  (a  pre- 
scribed set of block diagonal matrices) which depends on the uncer- 
tainty and performance objectives of each problem. Defining the 
structure involves specifying three things; the type of each block, the 
total number of blocks, and their dimensions. There are two types of 
blocks in this formulation-repeated scalar and full blocks. Two non- 
negative integers, s and f ,  represent the number of repeated scalar 
blocks and the number of ful l  blocks, respectively. To bookkeep their 
dimensions, we introduce positiveintegers TI,. . . , T ~ ;  ml, . . . , m f .  The 
i’th scalar block is ~j x T;, while the j’th full block is mj x mj. With 
those integers given, we define A as 

A := {diag [611,,, . . . , 6sIrs ,Al , .  . . ,A,]  : 
6; E C, Aj E CmjXml}  (3.1) 

and 
B A  := {A E A : .(A) I 1) 
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For consistency among all the dimensions, we must have EL1 T, + xi=l m3 = n. The full blocks do not have to  be square, but restricting 
them as such saves a great deal in terms of notation. 

Definition 3.1 For M E CnXn, PA ( M )  is defined 

(3.2 
1 

P A ( M )  := m i n { d ( A ) : d e t ( I t M A ) = O }  
AEA 

unless no A E A makes I + M A  singular, then PA ( M )  = 0. 

We can easily calculate PA ( M )  when A is one of two extreme sets. 

If A = (61,  : 6 E C}, then p~ ( M )  = p ( M ) .  

If A = CnXn, then ( M )  = 5 ( M )  

Obviously, a general A as in (3.1) satisfies {61: 6 E C} C A C C”’”. 
Hence directly from the “minimization” in Definition 3.1, we can con- 
clude that p ( M )  < PA ( M )  < d ( M ) .  These bounds alone are not 
sufficient for our purposes, because the gap between p and d can be 
arbitrarily large. We refine them by considering transformations on 
M that do not affect PA ( M ) ,  but do affect p and 5. To do this, 
define the following two subsets of Cnxn 

Q = { A E A : A * A = I , }  (3.3) 

D, = D: > O,d, E R,d, > 0) 

2, = {diag 1 0 1 , .  . . , D,, &Iml,. . . , d f l , , ]  : D, E C’*”’, 

(3.4) 

Note that for any A E A, Q E &, and D E V, several identities hold, 
namely: & * E Q , Q A E A , A Q E A , d ( Q A )  = E ( A Q ) = d ( A ) , D A =  
AD. Consequently, we have: 

Theorem 3.2 For all Q E Q and D E V 

PA (MQ) = PA (QM) = PA ( M )  = PA (DMD-’) 

and, 

Theorem 3.3 

~ , ; P ( Q M )  I A~gA P ( A W  = pA (MI I kp (DMD-~)  (3.5) 

An important question is “when are the bounds in (3.5) actually equal- 
ities?”. A main result from [Doy] is that the left inequality is always 
an equality. We state this as a theorem. 

Theorem 3.4 

In [Doy] and [Pa,], it is shown that if 2s + f 5 3 (recall these are the 
number of repeated scalar and full blocks), then the right inequality 
is also an equality, and for block structures with 2s + f > 3, there 
exist matrices for which p is less than the infimum. Unfortunately, 
the function p (QM) has local maximums which are not global, hence 
evaluating the expression max p (QM) using gradient-like techniques 

is difficult. Moreover, it is expensive, since the cost evaluation and 
derivative calculation involves eigenvalue/eigenvector computations. 
Roughly speaking, this paper addresses the lower bound, and develops 
an iterative algorithm which quickly finds points Q E Q that are local 
maximums of the function T : B A  -tR, defined by T (A) = p(AM). 
Some of the results are generalizations of those found in [FanT] and 
[DanKL] . 
We will be interested in local maximums of the function . (A)  = 
p(AM),  therefore we begin with some facts from perturbation the- 
ory, which assist in characterizing local phenomena. 

max p(QM) = PA ( M )  
QEQ 

QEQ 
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4 Matrix Facts 

4.1 Derivatives of eigenvalues 

In this section we review the differentiablity properties of eigenvalues 
and eigenvectors of matrices depending analytically on a real variable. 
All material comes from [Kat]. 

Suppose M : R + C n x n  is an analytic function of the real parameter t. 
If A, is a eigenvalue of MO := M ( 0 )  of multiplicity one, then for some 
open interval containing 0, this eigenvalue is a analytic function o f t ,  
as are the eigenvectors associated with it. That is, suppose there are 
nonzero x,, yo E C", satisfying 

y;xo = 1 
Max, = Aox, 
Y,'M = A O Y ;  

Then there is an c > 0 and analytic functions x : (-E, E) + C", y : 
( - ~ , E ) + C " , A : ( - C , C ) + C  such that for a l l t  E ( - E , € )  

y*x = 1 
M x  = Ax 

y'M = Ay' 
(4.2) 

This follows from [Kat]. Hence, we can differentiate and obtain 

i ( 0 )  = y.$f(O)x, (4.3) 

4.2 Linear algebra lemmas 

The next two lemmas are elementary linear algebra. They will be used 
in the main theorem of the next section. 

Lemma 4.1 Let y,x  E C" with y # 0 and x # 0. There exists 
d E R, d > 0, such that y = dx if and only if Re (y'Wx) 5 0 for every 
W E CnXn satisfying W +- W' 5 0. 

Proof: The "only if" is easy to verify, so we just prove the "if". As 
usual, let yi and zi denote the i'th element of y and x, and 
Wi,j denote the i, j element of W E CnX". Begin with any 
positive integer i 5 n. Let W be zero everywhere, except in the 
i,i element, and set W;,i = ui +- ju; for arbitrary ui 5 0 and 
wi E R. It can be shown that either x; = 0, y; = 0, or that the 
phases of xi and y; are the same. 
Now, let I # k be two integers 5 n. Let w E R be arbitrary. 
Define a matrix W by Wi,k := -e-Jw,Wk,l := eJw and zero 
everywhere else. Note that W t W' = 0, so trivially W satisfies 
the hypothesis. In this case, one can show that xi = 0 if and 
only if yi = 0, and for nonzero components, the quantity I$I is 
independent of i. Define d > 0 to be this ratio. For every 2, we 
have yi = dx; as desired. fl 

Lemma 4.2 Let a and b be two nonzero vectors in C". Then there 
exists a hermitian, positive definite D E CnXn, such that Db = a if 
and only if b'a E (0, w). 

5 Eigenvector characterization of local max- 
imums 

Consider the function T: BA -+ R, defined by T (A) = p ( A M ) .  Recall 
that ( M )  = max&BA T (A), and that the global maximum does 
occur on the "boundary" ofBA, Q. In this section, we characterize 
the occurance of a local maximum of T a t  A = I in terms of the 
eigenvectors of M .  We begin with some notation. 

Let x and y he right and left eigenvectors of M ,  associated with an 
eigenvalue A. Partition x and y compatibly with the block structure 

X =  7 Y' 

where x7,,yr, E C'i and x,,,y,, E Cmj for each i and j. We call 
these the "block components" of x and y, and for technical reasons, 
we make a nondegeneracy assumption - for every i, yr,*xr, + 0, and 
for each j ,  x,, # 0, y,, # 0. 

Theorem 5.1 Let M E CnXn be given, and suppose A, > 0 is a 
distinct eigenvalue of M ,  with right and left eigenvectors x and y 
respectivezy, and wsume that these vectors satisfy the nondegeneracy 
assumption above. Suppose that p ( M )  = A,. If the function T: BA + 
R defined by T(A) = p(AM) has a local maximum (with respect to the 
set BA) a t  A = I, then there exists a D E 2, such that D-'y = Dx. 

Proof: Let G E A with G t G' 5 0. Obviously, G appears as 

diag [glIr,, . . . , g&, GI, .  . . , Gfl ( 5 4  
where Re(g;) 5 0, and G j  t G3 5 0 for all i and j. Obviously, 
a t  t = 0, eGt = I, and eGt E BA for all t 2 0. Define a 
matrix function W : R + C n X "  by W(t)  := eGtM. Note that at 
t = 0, A, is a simple eigenvalue of W(O), with x and y the right 
and left eigenvectors. For some nonempty interval containing 0, 
this eigenvalue is always simple, and hence there is an analytic 
function of the real variable t ,  A(t), defined on that interval, such 
that A(t) is and eisenvalue of W(t)  for all t and A(0) = A,. It is 
easy to  calculate A(O), namely 

i (0)  = y*tk(O)x = A,y'Gx (5.3) 

By hypothesis, A, > 0, p ( M )  = A, and the function p ( A M )  has 
a local maximum (with respect to BA) at A = I .  Therefore 

Re ( i t  - A ( t )  I,=,> (5-4) 

which says that the magnitude of A must be nonincreasing at 
t = 0. Using the "block notation'' of (5.1) and substituting (5.2) 
and (5.3) into (5.4) yields 

This must hold for arbitrary G E A satisfying G +- G' 5 0. 
Applying lemmas 4.1 and 4.2 we conclude that for each i ,  there 
is a D; = Df E Cnxn,  Di > 0 such that yr, = D;x,, and for each 
j ,  there is a dj E R,dj  > 0 such that y,, = djx,,. Arranging 
all of these D;'s and dj's into one block diagonal D, and taking 
the hermitian square root proves the lemma. fl 

Remarks: The only restrictive assumption we have made in the above 
lemma is that the eigenvalue A, is distinct. This assures differ- 
entiabilty. Since A, is a solution of a max maxlA;(MA) ), it is 

AEBA 1 

likely that a t  the maximum it will be distinct. 

6 Decomposition 

Consider matrices in CnX", and a compatible block structure A, with 
integers TI, .  . ., T,, ml,. . ., mf defining the dimensions of the blocks, 
as outlined in section 3. Define X to be the following set of block 
diagonal, hermitian matrices: 

X := { diag [Zl , .  . ., Z,, 21,. . . , z f - ~ ]  : (6.1) 
2; = 2; E Cr,Xr* ,zj € RI 
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This is a real inner product space (of dimension 
inner product defined by 

T: + f - 1) with 

P,T E X (P,T) := t r ( P T )  (6.2) 

(P,T) = C t r ( p i ~ )  + C p j t j  

which, in terms of the blocks that make up P and L is just 
8 f - 1  

i=l j=1 
(6.3) 

Let M be a complex matrix with SVD 

M = pUV* + UzC2V2'. (6.4) 
In this setting, p i s  any singular value of M ,  not necessarily i?(M), but 
none of the singular values in Cz should equal p. We use the integer 
T > 0, to denote the multiplicity of p. Hence U, V E CnX', U*U = 

We proceed to define the set VM,,~. Partition U and V compatibly 

V'V = I,, u2, & E C"X+'), u;v2 = Vp.2 = I"+. 

with A as 

U =  

where A;, B; E , Ei, F; E CmiX'. 

For r ]  E C', with llqll = 1, define the following components 

P," = A,qq*A: - B,qq'B: 
p: = q* (E,*E, - F;F3) q. 

Let V M , ~  c X be the set of all such P". 

VMJ := { diag [P: ,... ,P,",p:,.. . ,P;-~] : 

P,",P: in ( 6 4 , ~  E C', l l ~ l l =  1) 
__ - 

Note that here we use two subscripts on V. The first is the matrix, 
and the second is the singular value in question. 

Remark: It can be shown, [FreLC] and [Doy], using perturbation 
theory similar t o  that in section 4.1, that the derivatives of the T 
singular values coalesced a t  p, of the matrix function eDtMe-Dt, 
are the eigenvalues of the matrix p(V*DU - V'DV) .  Hence, 
if D E V, and all of the eigenvalues of U'DU - V'DV are 
negative, then D is a descent direction for these T singular values. 
Simple convexity ideas yield that there is such a D E V if and 
only if 0 CO(VM,~).  This was the original motivation for 
defining the set V, [Doy], [PacD]. It is especially important when 
considering the computation and characterization of the upper 
bound, inf a (eDMe-D).  

DE'D 

The main reason we introduce V M , ~  here is that if there is a singular 
value, p, of M ,  and 0 E V M , ~ ,  then p is a lower bound for p ( M ) .  

T h e o r e m  6.1 Let M and a compatible block structure A be given. 
Suppose p is a singular value of M with multiplicity T .  Define V M , ~  
as in (6.7). Then 0 E V M , ~  if and only if there exists a vector x E Cn, 
a matrix X l  E Cnxn, a matrix Q E Q, such that 11x11 = 1, x * X i  = 0, 
X,x = 0 ,  and 

Q M  = P X X *  + X l  (6.8) 

Proof:  Let the SVD of M be 

-, If 0 E V M , ~  then there exists a q E C', 11q11 = 1 such that 

These relations, and the partition in (6.5) imply that there is 
Q E Q such that 

Quv= Vrl (6.10) 

Define x E C" as the above; x := &UT = VT. Since llqll = 1 
and U and V are isometries, IJxIJ = 1. Simple manipulation of 
(6.9) and (6.10) gives 

( Q M )  x = ( Q M )  V q  = BQUq = o V q  = px  
X' ( Q M )  = q*U*Q* ( Q M )  = pq*V* = px* 

Defining X l  := M - pxx* completes the decomposition 

c Suppose Q , x ,  and X ,  are given as in the hypothesis, so that 
QM = pxx* + 51. Define M := Q M .  A singular value de- 
composition of M is 

f i  = p ( Q U )  V' + (QU2) C2V; 

Hence p is a singular value of U, and f i x  = px and f i * x  = px.  
Therefore there exists a vector q E C', 11711 = 1 such that x = 
Q U q  = V q .  This implies that 0 E V M , ~  as desired. fl 

It is obvious from the decomppsition that p is a lower bound for p ( M )  
since p is an eigenvalue of M = Q M .  The following corollary follows 
immediately. 

Corollary 6.2 Let M and a compatible block structure A be given. 
Suppose D E V, and that p is a singular value of DMD-' with 
multiplicity T .  Define VDMD-I ,~  as above. Then 0 E VDMD-I ,~  if 
and only if there exists a vector x E Cn, a matrix X l  E CnX", and a 
matrix Q E Q such that llxll = 1, x * X l  = 0, X l x  = 0 ,  and 

QDMD-l = pxx* + x, (6.11) 

The main result of this section is that there is always (almost) a de- 
composition as in (6.11) with p in fact equal to p ( M )  (remember, any 
p satisfying (6.11) is a lower bound for p ( M ) ) .  
T h e o r e m  6.3 Let Qo E Q achieve the global optimum for the prob- 
lem max p ( Q M ) ,  and suppose that the eigenvalue associated with 

p(Q,M) is distinct, real and positive, and call it p (since it is). If 
x and y are the right and left eigenvectors of this eigenvalue, and 
their block components (en. 5.1) satisfy the nondegeneracy assump- 
tion, then there exists a D E V such that 

QEQ 

(6.12) Q,DMD-l(Dx)  = pDx 
x'DQ,DMD-' = px'D. 

Proof: By Theorems 3.3 & 3.4, any global maximizer of max p ( Q M ) ,  

is also a maximizer of max p ( A M ) .  Define A? := Q,M, then 

A = I is a local (in fact global) maximizer for max p (AM). 
Apply Theorem 5.1 to the matrix M to prove the theorem. 

Remarks: Note that this is the decomposition described in Corollary 
6.2, since D x  is both a right and left eigenvector of QoDMD-' 
associated with the eigenvalue p. 

This result was first shown in [FanT], for the case of s = 0. 
It is also similar to the "principle direction alignment" ideas in 
[DanKL]. Theorem 6.3 is more general though, since it handles 
repeated scalar blocks, as well as full blocks. Finally, the proof 
(which implicitly includes Theorem 5.1) is much simpler. 
This theorem is not  t r u e  if we consider local maximums that are 
not global of the function P : Q - + R  defined as i(Q) := p ( Q M ) .  

464 
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7 Lower bound power algorithm 

How can this decomposition be used? In this section, we propose an 
iterative algorithm (reminiscent of the power algorithm for spectral 
radius) t o  find such decompositions, and therefore get lower bounds 
for p. 
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Rewriting (6.12), and changing notation a bit, we want to find a Q E 
Q, D E Q, > 0, and z E C" with llzll = 1 such that 

QDMD-~Z = p~ 
D-'M*DQ*X = px 

which can in turn be rewritten as 

M (D-'z) = p (D-lQ'z) 
M*(DQ*z) = ~ ( D z ) .  

For a given D, Q, and x, define vectors a, b, z, and w by 

(7.1) 
b:= D-lx , a : =  D-'Q*x 
z : =  DQ'x , w : = D x  

With this definition, we have Mb = ua and M'z = uw. We can 
eliminate z from (7.1), and redefining D t D2 to get 

b = Qa = D-'w 
z = D a = Q ' w  

We would like to write these four new relationships in a manner that 
does not involve the matrices Q and D. With a few technical condi- 
tions, this can be done. In order t o  simplify the upcoming formulas, we 
will consider a block structure with s = 1, f = 1. By simply duplicat- 
ing the appropriate formulas for additional blocks, it is  straightforward 
to extend the algorithm to more general structures. Hence the sets V 
and Q look like 

Q = {diag[D1,d21ml] : D1 E CnXr1,  D1 = 0; > O,d2 > 0) (7.2) 

Q = {diag[qi&,Qzl: qiqi = 1 , Q 2  E Cm1Xm1,Q;Q2 = Ll}. (7.3) 

With respect to this, we will partition the vectors accordingly, so 

z = [ ] , where z1 E Crl and zz E Cml,  and likewise for the other 

vect ors. 

Lemma 7.1 Let r l  and ml be positive integers. Let z1 , w1 , b l  
a1 E C'1 and z2, wz, b2, a2 E Cml be nonzero vectors with aTw1 # 0. 
Then, there exists a D E V, and Q E Q such that 

b = Q a  , z = Q * w  
z = Da , b =  D-lw 

if and only if 

Proof: 

+ The relations for zz and b2 follow by direct substitution. For z1 
and b1, it is easiest t o  define an auxiliary variable x := Dfrb, and 
then verify via substitutions. 

t Let q1 = &, since this is well defined. Likewise, choose d2 = 
01 ul 

- By assumption, dz is well defined, and nonzero. 
llazll 
Obviously, llw2ll = 11~211, so let 9 2  be any unitary matrix that 
takes wz into zz. An easy calculation shows that Q2 also rotates 
b2 into a2, 

1 1 
Qzbz = - 9 2 ~ 2  = -z2 = a2. 

dz dz 

Next, we calculate a i s .  Plugging in gives aizl = lafw11. By 
assumption, this is nonzero, hence Lemma 4.2 yields a hermitian, 
positive definite D1 such that Dial = 21. As we hope, D1 takes 
b l  into w1 too, 

Dlbl = qlDlal = qlzl = w1. 

Defining D and Q in the obvious manner completes the proof. 

This gives us the main theorem. 

Theorem 7.2 Let M E CnX" be given, and let A be the two block 
(s = 1, f = 1) structure defined above, with block sizes r1 and mi, 
where TI + ml = n. Suppose /3 > 0 is given. Then there exists Q E Q, 
D E V, x = [ I: ] E Cn7 X l  E Cnx("-l) such that 

ll4 = 1 , Z l  # 0, 2 2  # 0 
28x1 = 0 , x1x = 0 

QDMD-' = ~XX' + X i  

if and only if there exists nonzero vectors z1,wl,bl,al E Crl and 
z2, w2, bz,az E Cml with aIw1 # 0 and 

(7.4) 

pa = Mb 

(7.5) 
pw = M'z 

Remark: In order to find decompositions using the representation 
this theorem allows (equation (7.5) - free of Q's and D's), we can 
restrict ourselves to unit vectors a, b, z, w. Why? Suppose we 
find nonzero vectors satifying (7.5). Examining these equations, 
it is clear that scaling z and w by some (Y # 0 and scaling b and 
a by some 7 # 0 does not affect any of the equalities in (7.5). 
Moreover, these equations always imply that llzll = IIwII, an.d 
llall = llbll, so by proper scaling, all the vectors would be uxut 
norm. 

In the above theorem, we have written the conditions (7.5) in a sugges- 
tive manner. We will attempt to find solutions to  (7.5) in a iterative 
fashion. In particular, for i = 1,2, let vectors aik,bik,zik, and wih, 
and positive scalars p k ,  & evolve as 

where p k + l  and ,&+I are chosen > 0, so that Ilak+lII = IIwk+lII = 1. 

Note also that if the initial b and w vectors that start the iteration 
are unit vectors, then a t  every step, all vectors, a, b, z, and w will be 
unit length. 

Remarks: 

7.a Potential problems are: 

0 Mbk = 0 ( M * q  = 0), then ak+l (Wk+l) is not well defined. 
0 aTkwlk = 0, then the vectors zlktl and/or blktl are not 

0 Either llw2kII = 0 or llazkll = 0, making b2, and/or zzk not 

The heuristic fix when any of these happen is to restart the 
algorithm a t  a different initial condition (ie., a new b1 and w1). 

7.b If the iteration does converge t_o an-equilibrium point, then the p 
values must be equal, that is p = p. This is easy to see: suppose 
the equations in (7.5) are satisfied (convergence-of the algorithm 
in (7.6)), but the p associated with b and a is p and the p asso- 
ciated with I and w is p .  The converged equations imply that 
there exists a Q E Q and D E V such that QDMD-'(Db) = 

well defined. 

well defined. 

. .  
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b ( D b )  and (QDMD-’)*(Db) = j ( D b ) .  Since the P’s are real, 
they must be equal. Hence, when verifying convergence of the 
algorithm, it is necessary to- begin checking the convergence of 
the vectors only after the p k  and P k  values are nearly equal. 
This saves some computations early in the iteration. 

7.c If there were only the first block, which is a repeated scalar 
block, the iteration would be a power iteration for the 
largest (in magnitude) eigenvalue of the matrix M .  Since 
p for 1 repeated scalar block is the spectral radius, the al- 
gorithm we have proposed reduces to  a valid algorithm in 
the special case of 1 repeated scalar block. 
If there were only the second block, which is a full block, the 
iteration becomes a eigenvalue power algorithm for M’M, 
hence it will give the largest singular value of M .  Again, 
with respect to  this specific block structure, this is what 
we want. 

Hence, the iteration we have proposed is a mix of two separate, 
well understood iterations. Both of these converge to  the largest 
eigenvalue/singular value. Therefore, we are led to guess (incor- 
rectly) that this algorithm will converge to  the largest P for 
which a decomposition described in Corollary 6.2 exists, which 
by Theorem 6.3 is equal to p~ ( M ) .  

Extensive computational experience has led to  the following conclu- 
sions: 

1. The difficulties described in 7.b above do not seem to occur 
in practice. Matrices whose eigenvector block components (eq. 
5.1) do not satisfy the “nonzero” block conditions described a t  
the beginning of section 5 will cause this problem. There is 
a systematic “reduction” that is possible with these matrices, 
which produces a smaller matrix A4 along with a smaller block 
structure, A, such that p~ (M) = p~ (a). More research is 
underway to  understand these reductions. In any event, while 
it is easy to  construct matrices where these problems happen, 
running the algorithm on frequency responses of actual closed 
loop systems has not been a problem. 

2. Limit cycles can occur, and seem to occur more often when there 
are large repeated scalar blocks. Unlike an equilibrium point, the 
presence of a stable limit cycle does not immediately give rise 
to  a lower bound for p. 

3. Ifs = 0 (and often when s > 0), the algorithm usually performs 
well, converging quickly, and providing a lower bound which is 
better (ie. bigger) than p ( M ) .  Unfortunately, this is not always 
true. We have found an example that has a stable equilibrium 
point with the corresponding p < p ( M ) .  With lack of any 
further insight, we do not bother to reproduce this here. The 
block structure was five 1 x 1 blocks. More numerical tests are 
outlined in the next section. 

4. There are many other iterative algorithms besides (7.6) that 
have decompositions (Theorem 6.3) as equilibrium points. For 
instance, simply rearranging the order of our iteration in (7.6) 
will yield a different algorithm, yet the decompositions are still 
the equilibrium points and vice versa. The most desirable al- 
gorithm would have as its only stable equilibrium points, de- 
compositions with large (relative to p ( M ) )  converged p values. 
Other iterations schemes may be better suited toward this goal. 

5. In general, there are several stable equilibrium points, with dif- 
ferent values of p. This means that the bound resulting from 
this algorithm might be simply a lower bound. This is in con- 
trast with the conventional power algorithms for p and 8,  where 
only the largest ones are stable. 

8 Implementation 

This section addresses the implementation of the algorithm, beginning 
with a heuristic selection of the starting vectors, bl and w1. 

To motivate what follows, suppose p ( M )  = inf 5 ( D M D - I ) ,  and 
that the infimum is achieved by Do. Then, from Theorem 6.1, we 
must have 0 E VDOMD-1 ~. Therefore, if 

DEZ, 

0 ,  

(8.1) h := D,MD;‘ = puv* + u2c2v; 
is a singular value decomposition, there is a 11 E C‘ and Q E Q, such 
that 

M V q  = pQVq 
(8.2) @ (QVv) = pvq 

Hence, with respect to  h, (which has p ( h )  = p ( M ) ) ,  the vectors b = 
w := V q  are the  correct b and w vectors for the decomposition. 
We therefore propose the following overall algorithm. 

1. Cheaply find a Dso that nearly minimizes i? (DMD-I ) .  In [Osb], 
an algorithm for computing 

DF := arg min trace (DMD-’M*D) 
D O  

Although there is little theoretical evidence to suggest that DF 
is a good choice of D,,, our experience has shown that it is. 

2. Absorb this into M ,  ie., define h := D,,MD;: 

3. choose bl = wl to  be a right singular vector associated with 
i? (h) - note that 8 (h) is a upper bound for p~ ( M )  

4. perform the iteration on M with these starting vectors 

9 Numerical examples 

Several numerical tests have been run with this algorithm, in addi- 
tion to  successful use in practical situations (Caltech design studies, 
Honeywell Systems and Research Center). In this section, two types 
of random tests are described, along with the numerical results that 
have been obtained. 

9.1 Test # 1 

Let n be a positive integer, and let A c Cnxn be any block structure. 
Let T be a positive integer with T 5 n. Using the definition of the set 
V, we can randomly generate matrices with the property that 

and at the minimum, there are T singular values coalesced at 1. In 
[FanT], such a procedure is given for block structures with s = 0 - 

no repeated scalar blocks - the extension of this procedure to block 
structures having repeated scalar blocks is simple. After running the 
algorithm on these matrices, several performance measures can be 
compiled, such as 

percentage that converge to can equilibrium point 

percentage that converge to  correct value of p (since we know 
that ( M )  = 1, this is possible to verify) 

time to converge (or conclude that the iteration is not going to 
converge) 

The “size” of the problem (number of blocks, size of blocks, number 
of maximum singular values coalesced at the infimum - T ,  etc.) will 
affect these, and our computational experiments include many combi- 
nations. The results are shown below. Figure 1 is a log-log plot of the 
time versus number of blocks, for different types of blocks, and differ- 
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ent values of T .  The notation is best explained by example: (3 : 2,O) 
means that T = 3 ,  and each block was a 2 x 2 repeated scalar block, and 
if the blocks were 2 x 2 full blocks, then the notation would be (r : 2,2) 
where T corresponds to  the number of coalesced singular values a t  the 
minimum. Note that as T increases, the power algorithm’s perfor- 
mance generally deteriorates. The timings indicate that the overall 
algorithm has roughly polynomial behavior in b,  where b is the num- 
ber of blocks. Figure 2 shows the percentage ofproblems for which 
the power algorithm actually converged, and hence gave a lower bound 
for p~ ( M ) .  Although there are several equilibrium points to  which 
the power algorithm could converge, in the cases where convergence 
was achieved, the average value of the corresponding lower bound was 
0.997. _ _  

3 I 

Unfortunately there is no (known) way to generate arbitrary matri- 
ces M with 1 = p~ ( M )  < inf i? (DMD-’). Hence, this numerical 
experiment only tests the power algorithm on the special class of ma- 
trices having the property that p and the upper bound are the same. 

DED 

9.2 Test # 2 

The most simple test, a t  least from an implementation standpoint, is 
to  generate random matrices for several different block structures, and 
let the algorithm run. There are two main drawbacks to  this approach. 
First, since p~ ( M )  is not explicitly known, the only conclusions that 
can be drawn from these experiments are 

the relationship between problem size and time to  converge to  a 
equilibrium point 

e an idea of the general “goodness” of the upper bound obtained 
from the Frobenious norm minimization (eq. 8.3) in relation to  
the lower bound obtained from convergence of the power algo- 
rithm. 

Second, and maybe more important, extrapolating the trends that 
emerge for random matrices in to  rules of thumb for matrices actually 
encountered in practice might be misleading. 

In any event, the results from this test are shown in Figures 3 and 
4. Figure 3 has the timings for various blocks structures - in all of 
these tests, every example converged to an equilibrium point. Figure 
4 shows that ratio of the resulting lower bound to  the Frobenious 
upper bound. This ratio could be increased closer to  1.0 by actually 
minimizing (DMD-’) directly. 

I Rgure 3 

0.85 

Numbs of blaks 

5 10 15 20 25 30 

9.3 Conclusions 

We have found that the algorithm works well in practice (Caltech 
experiments and Honeywell S&RC). However, it does fail to  converge 
sometime, and often for large block structures, the value that it gives 
is undoubtably a p - value that is lower than p. In general, we have 
found that it works better in practice than it does on the matrices 
generated in Test #l. On the other hand, simply generating random 
matrices tends to  give an overly optimistic opinion of the performance 
of the power algorithm. 
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