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Robustness and Performance Trade-offs 
in Control Design for Flexible Structures 

Gary J. Balas, Member, IEEE, and John C. Doyle 

Abstract-Linear control design models for flexible structures 
are only an approximation to the “real” structural system. There 
are always modeling errors or uncertainty present. Descriptions 
of these uncertainties determine the trade-off between achievable 
performance and robustness of the control design. In this paper it 
is shown that a controller synthesized for a plant model which is 
not described accurately by the nominal and uncertainty models 
may be unstable or exhibit poor performance when implemented 
on the actual system. In contrast, accurate structured uncertainty 
descriptions lead to controllers which achieve high performance 
when implemented on the experimental facility. It is also shown 
that similar performance, theoretically and experimentally, is 
obtained for a surprisingly wide range of uncertain levels in the 
design model. This suggests that while it is important to have 
reasonable structured uncertainty models, it may not always be 
necessary to pin down precise levels (i.e., weights) of uncertainty. 
Experimental results are presented which substantiate these con- 
clusions. 

I. INTRODUCTION 

DVANCES in the control of large flexible structures A are necessary to meet pointing and shape accuracy re- 
quirements of future space missions. These structures will 
have numerous lightly damped, densely packed flexible body 
modes. Due to their size and complexity, ground testing 
in earth’s environment will lead to system models that are 
inaccurate for operation in a zero-g environment. Even with 
on-orbit identification of the structure, discrepancies between 
mathematical models and the “real” structure will still exist, 
though to a lesser extent. Therefore, control design methods 
must account for model inaccuracies or uncertainties. Such 
methods should optimize the controller robustness and per- 
formance characteristics based on the accuracy of the design 
model. Hence, accurate accounting and characterization of 
variations between “real” flexible structures and their math- 
ematical models is essential [1]-[3]. 

This paper addresses incorporation of model mismatch 
between the physical system and its mathematical descrip- 
tions into the control design process using the structured 
singular value ( p )  framework. Control design models based 
on a nominal structural model, uncertainty descriptions, and 
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additive noise models are developed. They define a family or 
set of uncertain plant models in which the physical system 
is assumed to reside. p-synthesis, via D - K iteration, is 
used to generate vibration suppression controllers for the 
Caltech experimental flexible structure. Vibration suppression 
for flexible structures is an active area of research and a 
complete summary of this work will not be attempted in this 
paper [4]-[7]. Since the physical structure is assumed to lie 
inside the model set, measures of robustness and performance 
characteristics of the controllers are evaluated and predicted 
when implemented on the flexible structure experiment. 

Controllers are synthesized for the experiment with varying 
levels of uncertainty in the design model. In this paper it is 
shown that a controller synthesized for a plant model which 
is not described accurately by the nominal and uncertainty 
models may be unstable or exhibit poor performance when im- 
plemented on the actual system. In contrast, accurate structured 
uncertainty descriptions lead to controllers which achieve high 
performance when implemented on the experimental facility. 
It is also shown that similar performance, theoretically and 
experimentally, is obtained for a wide range of uncertain levels 
in the design model. This suggests that while it is important 
to have reasonable structured uncertainty models, it may not 
always be necessary to pin down precise levels (i.e., weights) 
of the uncertainty. 

The following sections describe the Caltech flexible struc- 
ture experiment and provide a brief overview of the structured 
singular value ( p )  framework. Trade-offs associated with un- 
certainty modeling of flexible structures are discussed. These 
trade-offs are incorporated into the problem formulation in 
the form of robustness and performance measures. A series 
of controllers are synthesized based on different uncertainty 
descriptions for the Caltech flexible structure. Experimental re- 
sults of the implementation of the control designs are presented 
and the results summarized. 

11. CALTECH EXPERIMENTAL FLEXIBLE STRUCTURE 
The Caltech experimental flexible structure is designed to 

include a number of attributes associated with large flexible 
space structures [l], [ 2 ] ,  [8]. These include lightly damped, 
closely spaced modes, collocated and noncollocated sensors 
and actuators, and numerous modes in the controller crossover 
region. The experimental structure, Fig. 1, consists of two 
bays, three columns, three noncollocated sensors, and actuators 
for control and an air actuator for disturbance. The entire 
structure is suspended from a mounting structure fixed to the 
ceiling to alleviate the problem of column buckling. The three 
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Fig. 1 .  Phase I Caltech flexible structure. 

voice coil actuators are attached to the mounting structure and 
act along the diagonals of the first story. The air actuator is 
mounted next to the structure and blows directly on sensor 1. 
The three sensors are accelerometers that are located on the 
second bay platform. 

A. Voice Coil Actuators 

The voice coil actuators, fabricated by Northern Magnetics 
Inc., are similar to typical loudspeakers outputting a force 
proportional to the input voltage. The actuators are mounted 
in line with the column diagonals and are rated at f1 .36 kg 
(3 lbs) of force at f 5  volts with a 60 Hz bandwidth. 

B. Air Actuators 

An air actuator is used as input disturbance to the second- 
story platform. It blows a stream of air directly on accelerome- 
ter 1. The actuator consists of compressed air, which is pulsed 
on and off by a solenoid. A model of air actuator is difficult 
to formulate because no accurate measurement of the orifice 
diameter, air pressure in the line, or force being exerted at 
the sensor is available. Hence a model of the actuators is 
experimentally derived by inputting a sinusoidal frequency 
sweep between 1 and 6 Hz in to the solenoid and measuring 
the response of the structure. A first-order, 3 Hz bandwidth 
input disturbance model is developed. 

C. Accelerometers 

Sunstrand QA- 1400 accelerometers are the sensors. These 
are mounted on the second-story platform, located along the 
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TABLE I 
DAMPING RATIOS AND NATURAL FREQUENCIES OF THE CALTECH STRUCTURE 

Mode 

Experimental 

Natural 

Frequency (Hz) 
1.17 

1.19 

2.26 

2.66 

2.75 

4.43 

Damping 

Ratio 

1.8 % 
1.8 % 
1.0 % 
1.6 % 
1.8 % 
0.9 % 

Mode 

Type 
1st X bending 

1st Y bending 

1st torsional 

2nd X bending 

2nd Y bending 

2nd torsional 

z-axis, y-axis, and at 45 degrees to both axes. The accelerom- 
eters have a flat frequency response between zero and 2'00 
Hz and are extremely sensitive. The sensor noise is rated at 
0.05% of the output at 0-10 Hz and 2% at 10-100 Hz. The 
accelerometers are scaled for accelerations of .016 g per volt 
to provide a maximum f 5  volts output at peak accelerations of 
the input disturbance. Their output is conditioned by a 100 Hz, 
fourth order Butterworth filter prior to input into the Masscomp 
analoddigital (AD) converter. 

D. System IdentiJcation of Experimental Transfer Functions 

System identification techniques are used to develop a six- 
mode multivariable model of the structure for control design 
[l], [2]. First, Chebyshev polynomials are employed to fit the 
experimental data with four single-inputlmulti-output (SIMO) 
transfer function models. The curve fitting technique uses a 
maximum magnitude error criteria to fit the data. This is 
similar to an 'FI, norm bound on the error. Table I contains 
a list of natural frequencies and damping values derived from 
experimental data. 

Combining these SIMO models leads to a multivariable 
model with 12 modes versus six in the original finite element 
model in the frequency range of interest. An ad hoc model 
reduction technique, based on a priori knowledge of the 
structural system and singular value decomposition methods, 
is used to develop a multivariable system description with six 
modes. Variations between the identified multivariable model 
and the experimental data are accounted for by uncertainty 
descriptions. The identified multivariable model is used as 
the baseline nominal plant description in the control problem 
formulation. A more detailed description of the identification 
method can be found in reference [8]. 

E. Real-Time Control Implementation 

The controllers are implemented on the Caltech flexible 
structure via a 5400 Masscomp computer. The real-time con- 
trol program implements a 60th order, three-inputlthree-output 
controller at 200 Hz and generates disturbance commands for 
the air actuator. The system has a 12 bit A/D converter with 
a range of f 5  volts, .00244 volts per bit, and a 12 bit D/A 
converter with a range of f 5  volts. The noise associated with 
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Fig. 2. Block diagram of experimental setup. 

(b) 

Fig. 3. Standard (a) control analysis and (b) synthesis block diagrams. 

the computer is f l  lsb (least significant bit). A block diagram 
of the experimental setup is shown in Fig. 2. 

111. STRUCTURED SINGULAR VALUE (p) FRAMEWORK 

Linear fractional transformations (LFT’s) form the basis 
of the structured singular value (p) framework. Fig. 3 shows 
the standard control analysis and synthesis block diagrams. 
The A block corresponds to structured perturbations or un- 
certainties and K corresponds to the controller. Any linear 
interconnection of inputs, outputs, commands, perturbations, 
and controller can be rearranged to match these diagrams. The 
p framework allows the incorporation of knowledge of the 
modeling errors and performance objectives, both in terms of 
frequency response data, into the control analysis and design 
problem. 

LFT’s and p provide a common framework in which 
to analyze and synthesize for robustness and performance 
requirements. p is used to analyze linear fractional transfor- 
mations when the A block has structure. p is defined for a 
general matrix M E Cnxn  as 

p ( M )  := (min{F(A): A E A, de t ( I+  MA) = O})-’ 

unless no A E A makes ( I+MA)  singular, then p(M) = 0. In 
the definition of p ( M )  there is an underlying structure A E A 
where A is a prescribed set of block diagonal matrices defined 
as 

A = (diag(SlI,, , . . . ,S,I,~,A,,.. . ,A,): 
S; E C, A j  E C m j x m ~ } .  

Si represents a repeated scalar block and A; represents a full 
matrix block. The unit ball, norm bounded set BA, is defined 
as BA = {A E A: ??(A) 5 l}. The sets Q and D leave A 
invariant in the sense that if A E A, Q E Q and D E D 
then F(AQ) = C(QA) and DAD-’ = A. Since p itself is 

difficult to compute, the sets Q and D can be used to obtain 
bounds for p 

Q = { Q  E A: Q*Q = In} 
D = {diag(D,, , . . . , DTs ,  d l I m l , .  . . , d f I m , ) :  

Di = 05 > 0 , d ;  E R+} 

where p denotes the spectral radius and ?? denotes the max- 
imum singular value. A more complete background on p is 
found in references [9]-[ 121. 

The control design approach is to minimize the p upper 
bound since synthesizing a controller to minimize p directly 
is too difficult. D - K iteration, a p-synthesis methodology, 
is used to design controllers to achieve the desired robust 
performance objectives by integrating ‘FI, control design with 
p analysis [13], [15], [16], [12]. Since the upper bound for p 
may be obtained by scaling and applying the 1 1  . Il,, D - K 
iteration approximates p-synthesis by finding a stabilizing 
controller K and a scaling matrix D such that the quantity 
IIDFl(P, K)D-’[ I ,  is minimized. D - K  iteration alternately 
minimizes the above expression with respect to K or D 
holding the other matrix :onstant. 

First consider holding D(s)  fixed. Given a stable, minimum 
phase, real-rational B(S) ,  define PO as 

The following results trivially hold: K stabilizes PD if and 
only if K stabilizes P ;  F ~ ( P D ,  K )  = DFl(P, K)D- l  where 
Po is a real-rational transfer functi2n matrix. *Hence, solv- 
ing the optimization min K JIDFl(P,K)D-lII, is the 
same as min K IIFl(PD, K)ll,. The last equation is 
an ‘FI, optimization control problem. The solution to the 
a, problem is well known and consists of solving algebraic 
Riccati equations in terms of the state-space system PO [131. 

Given a stabilizing controller, K ( s ) ,  solve the following 
minimization corresponding to the upper bound for p 

stabilizing 

stabilizing 

This minimization is done over the {real, positive} D, from 
the set D. Note that the addition of phase to each d; does 
not affect the value of Cr[D,Fl(P, K ) ( j w ) D l 1 ]  [16]. Hence, 
each discrete function, d; ,  of frequency is fit (in magpitude) 
by a proper, stable, minimum-phase transfer function, dR, (s). 
Although this iteration scheme is not guaranteed to reach the 
global optimum, it has been applied with great success to 
vibration suppression for flexible structures, flight control, and 
chemical process control problems [3], [121, [141, 1151. 

Iv .  ROBUSTNESS AND PERFORMANCE TRADE-OFFS 

Selection of uncertainty descriptions plays a major role in 
the trade-off between robustness and performance require- 
ments in the control design process. A controller design based 
on an assumed “perfect” model leads to a high performance 
design on the model, but when implemented on the “real” 
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system it may be destabilizing or exhibit poor performance. 
This is attributed to the control design methodology optimizing 
the controller based only on the information provided it, 
which it assumes is “perfect.” Models, though, are only 
approximations to physical systems. Uncertainty descriptions 
provide a quantitative measure of variations between mathe- 
matical models and the physical system. It is essential that a 
control design methodology include uncertainty descriptions 
into the optimization process. A major attribute of p is the 
incorporation of both robustness and performance objectives 
into a compatible control analysis and design framework. 

Uncertainty descriptions and levels are directly related to 
physical modeling of the problem and need to be developed 
based on actual system characteristics. For example, choosing 
a large uncertainty model, unmotivated by physical data, can 
lead to overly conservative control designs, thereby limiting 
performance of the control design. A trade-off exists between 
robustness of the control law and performance objectives in 
the design process. 

To better illustrate this trade-off, consider synthesis of a 
hypothetical controller for a specific level of uncertainty, a,  
using p-synthesis techniques. The data used in this example 
is not real; it is used to illustrate the trade-off between 
robustness and performance which occurs in real physical 
systems. For a prescribed level of uncertainty, a, we are 
able to design a controller, E,  which achieves a “worst-case” 
performance level of ,O, corresponding to perfarma~ce-weight. 

This provides the point “x”  on the curve in Fig. 4. A ,B equal 
to one corresponds to the closed-loop, worst-case performance 
equaling the open-loop performance, for ,O < 1, the closed- 
loop worst-case performance is better than the open-loop, and 
for ,@ > 1 it is worse. Assuming the system to be controlled is 
described exactly by the set of plants defined by the nominal 
model and uncertainty descriptions, the level of performance 
achieved for the worst case input signal affecting the worst 
case plant model can be formulated as an ‘FI, control problem. 

Suppose the initial model set, described by the nominal 
structural model and uncertainty descriptions, is a conservative 
representation of the physical structure: That is, extra plants 
are included in the model set which are not feasible. The con- 
troller, E,  designed for this model set will likely achieve better 
performance when implemented on the physical structure than 
is anticipated due to the predicted performance level, ,O, being 
based on the worst plant model in the initial model set. If the 
physical system does not correspond to the worst-case model 

O l d ’  o I Q M M Q ~ M ~ ~ ~ W I M  ’ ’ ‘ ’ ’ ’ ’ ’ 1 
UNcBRTNmY ( % ) 

Fig. 5. 
and 80%. 

Six controller for uncertainty levels of 3%. lo%, 20%, 40%, 60%, 

in the set, the performance level on the closed-loop system 
will be higher than the theoretically predicted value. 

Similarly, if the uncertainty descriptions do not encompass 
the physical system, the controller may destabilize the system 
or severely degrade performance. As the difference between 
the design model and the physical system increases, the 
performance of the controller, a, decreases. A graphical 
representation of this is presented in Fig. 4. The dotted line 
indicates how the performance, p, of the control law might 
vary as a function of the uncertainty level a. As an example, 
the control law is designed for an uncertainty level of 
40% and achieves a performance of 0.58. If there is less 
uncertainty between the “real” system and the model, the 
controller will exhibit slightly improved performance when 
implemented. Conversely, if there is more variation between 
the “real” system and model, the control law performance will 
degrade. 

For the same theoretical example, six controllers, K1 

through K S ,  are designed for 3%, lo%, 20%, 40%, 60%, and 
80% uncertainty, each generating a curve similar to Fig. 4. 
A graph of these curves is shown in Fig. 5. Each “x” in 
the figure corresponds to the theoretical level of performance 
the p-synthesis controller would achieve for a specified level 
of uncertainty. The solid curve represents the envelope of 
achievable performance for the control designs based on 
the nominal model and the uncertainty description. As one 
would expect, the highest performance is achieved when 
the nominal model is a perfect representation of the “real” 
system. Based on these graphs, one can see that accurately 
describing the physical system with nonconservative sets 
of plants results in superior performing controllers on the 
“real” system. This approach can be employed as a means of 
model validation to verify the consistency of the model and 
uncertainty descriptions with experimental data. 

V. VIBRATION SUPPRESSION CONTROL DESIGN 

The trade-off between robustness and performance via selec- 
tion of uncertainty descriptions is investigated on the Caltech 
Phase I flexible structure experiment. Results indicate that an 
accurate plant (nominal) model and uncertainty descriptions 
lead to controllers which exhibit superior performance when 
implemented on the physical system. It is also observed that 
the location and structure of the uncertainty model in the 
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tainty weight. 

Frequency response of actuator 2 to sensors and the additive uncer- 

problem formulation has a direct bearing on the performance 
of multivariable control designs. This is in contrast to single- 
inputhingle-output uncertainty models where location in the 
problem formulation is unimportant. 

A series of controllers are designed for the experiment by 
varying levels of uncertainty and sensor noise weights. One set 
of controllers is designed using only an additive sensor noise 
model to account for uncertainty. These controllers destabilize 
the physical system until the sensor noise level is increased in 
the problem formulation to the magnitude of the flexible modes 
response. A second set of controllers is formulated using 
frequency domain uncertainty descriptions of the variations be- 
tween the mathematical model and the physical system. These 
designs make use of an additive uncertainty model to account 
for high frequency unmodeled dynamics and multiplicative 
input/output uncertainty to account for actuator/sensor errors 
and mode shape mismatch. As one traverses from a controller 
designed with only an additive uncertainty model to one with 
a significant amount of inputloutput uncertainty in addition to 
the additive uncertainty model, the experimental performance 
level achieved is maximized between the two extremes. These 
results clearly indicate the trade-off between robustness and 
performance in control design and the importance of uncer- 
tainty descriptions in the control design process. 

A. Control Objective 

The control objective is to attenuate vibration of the first six 
natural frequencies in the Phase I Caltech flexible structure at 
the three accelerometer locations. The input disturbance is a 
sine sweep between 1 and 6 Hz commanded to air actuator 
1. The output air stream blows directly on the sensor 1. The 
performance measure is to minimize the maximum frequency 
response of the first six modes at the sensor locations, as 
compared with their open-loop response, for a worst case input 
signal. This specification is formulated as minimizing the 3-1, 
norm between the input disturbances and sensor outputs. 

B. Uncertainty Descriptions 

Frequency domain uncertainty descriptions are employed to 
account for the variation between the model and the physical 
system. An additive uncertainty weight accounts for the low 
frequency inaccuracies (below 0.8 Hz) and the unmodeled 

high frequency dynamics (above 8 Hz). The magnitude of the 
additive uncertainty weight at high frequency is selected to 
envelope the unmodeled modes of the system. The additive 
uncertainty weight assures that the high frequency modes 
are gain stabilized by requiring the control design to satisfy 
IIWa;',KSllm < 1, where K is the controller and S is 
the sensitivity transfer function ( I  - PnomK)-'. A plot of 
the frequency response of transfer functions between voice 
coil actuator 2 and the three sensors along with the additive 
uncertainty weight is shown in Fig. 6. The additive uncertainty 
weight is given by 

(s + S ) ( s  + 12)(s + 24) 
(s + .S)(s  + 400p 

' Wadd = 8 

Within the controller bandwidth, 1 to 5 Hz, the additive un- 
certainty takes on its minimum value. This weight is purposely 
reduced within this frequency range to demonstrate the role 
additional uncertainty descriptions, i.e., multiplicative input 
and output uncertainty weights, play in the performance of the 
controllers. The magnitude of the additive uncertainty weight 
is selected to insure that all controllers synthesized with this 
weight would stabilize the structure. 

The input and output multiplicative uncertainty are inde- 
pendently varied to gauge their effect on the robustness and 
performance properties of the controller. These uncertainties 
are selected to be constant for two reasons. The additive 
Uncertainty weight, Wadd, dominates the plant model outside 
of the 0.8 Hz to 8 Hz frequency range. Hence additional 
multiplicative uncertainty outside the 0.8 Hz to 8 Hz frequency 
range would have little effect on the plant description. The 
second reason for selecting a constant multiplicative input and 
output description is that there is negligible frequency variation 
in the errors between 1 and 5 Hz. 

The multiplicative input uncertainty is used to represent 
errors in the actuator model and in the mismatch between 
the experimentally derived transfer function and the model 
between 0.8 Hz to 8 Hz. Similarly the multiplicative output 
uncertainty represents errors in the sensor models and output 
error in the control model. In the control problem formulation, 
the multiplicative weights are distributed between the inputs 
and outputs of the uncertainty blocks to provide better initial 
scaling for the 3-1, control design algorithms. Despite the 
number of lightly damped, flexible modes, no numerical 
problems were encountered using the control design 
algorithms [ 121. 

C. Control Problem Formulation 

The control problem interconnection structure is shown in 
Fig. 7. The identified four-inputhhree-output nominal model 
of the flexible structure, Pnom, is used to model the flexible 
structure experiment. As stated, the control design must be 
robust to unmodeled high frequency dynamics and model 
errors while attenuating the vibrational responses of the first 
six flexible modes. The additive uncertainty weight is modeled 
as an unstructured full block uncertainty, A,, around the 
flexible structure model as seen in Fig. 7. 

Multiplicative input and output weights, actu and sensu, 
are the parameters varied to examine trade-offs between the 
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Fig. 7. Block diagram of control problem formulation. 

robustness and performance of the control designs. A constant 
input uncertainty, actu, is selected to account for actuator 
errors and mismatch between the input mode shapes and the 
experimental data. actu is varied from 0 to 0.5, representing a 
0 to 25% variation in the uncertainty level associated with the 
input signals to the flexible structure model. sensu represents 
a constant multiplicative output uncertainty which accounts 
for sensor errors and output mode shape discrepancies. One 
set of controllers is formulated with no output multiplicative 
uncertainty, sensu, and the input uncertainty, acfu, varied. 
These controllers investigate the effect of input uncertainty 
descriptions on the performance characteristics of the control 
designs when implemented on the physical system. Similarly, 
a set of controllers are synthesized with no input uncertainty, 
acfu, and the output multiplicative uncertainty, sensu, varied 
between 0 and 0.5 (0-25% uncertainty) to examine the effect 
of output uncertainty. 

The input and output multiplicative uncertainty models are 
described by full block unstructured uncertainty. Full block 
uncertainty descriptions indicate that cross coupling between 
the input (output) channels is allowed. Representing the uncer- 
tainty as scalar blocks would restrict errors to the individual 
channels (i.e., no cross coupling of uncertainty). During the 
analysis stage of the control designs, comparisons are made 
between full and scalar block multiplicative uncertainty mod- 
els. The three structured scalar uncertainty blocks had p values 
that were I-3% less than the full block uncertainties. This 
implies that if the structured uncertainty is a more accurate 
description of the physical system, it would have I-3% better 
robustness margins and exhibit 1-3% better performance than 
the unstructured uncertainties when implemented. This is a 
modest difference, hence the unstructured uncertainties are 
used in the control analysis and design. 

The advantage of describing the input uncertainty by a full 
block as opposed to scalar blocks is two fold: It reduces 
the number of uncertainty block and accounts for cross feed 
between channels leading to a more robust control design. The 
output multiplicative uncertainty is also treated as a full block 
uncertainty and exhibited similar characteristics to the input 
uncertainty model. 

The performance weight for vibration attenuation is selected 
as a constant scaling, pe&t, on the sensor outputs. The 
disturbance to acceleration output transfer functions are first 
scaled to one, then the performance weight, perjivt, is used to 
determine the amount of attenuation of the frequency domain 
peaks. A constant weighting is sufficient only if one desires 
the closed-loop performance transfer functions to be flat across 
frequency with no additional frequency shaping. Since the 
magnitude of the six flexible modes between 1 and 5 Hz 
are all on the same order, a constant scaling provides a good 
weighted performance objective without adding states to the 
control problem. 

The input disturbance enters via air actuator 1 and blows 
directly on sensor 1. A first-order weight, *, is used to 
describe the input excitation. Force and rate limits on the 
voice coil actuators are also included in the control design. The 
actuator force limit is included by scaling, magwt, its output 
to one when the force is at f3 lbs. This scaling needs to be 
consistent with a unit input level of disturbance. Similarly, 
the 60 Hz rate limit is scaled with ratewf. The sensor noise 
level for the accelerometers is included as a performance 
limitation. The weighting, senswt, is selected to be 2 x 
representing an accelerometer signal to noise ratio of 250. 
These performance specifications are accounted for in the p- 
framework by a full block unstructured uncertainty, resulting 
in a 'FI, norm measure. All performance requirements are 
satisfied when the 'FI, norm of the performance block is less 
than one. 

The accelerometers are filtered by 100 Hz, fourth-order 
Butterworth filters before being input into the A/D converter. 
One can account for these filters with accurate fourth-order 
models in each channel, but this would entail an additional 12 
states in the problem formulation. A first-order approximation 
of the filters (-) is used instead, resulting in the addition 
of three states. This approximation matches the magnitude and 
phase of the fourth-order Butterworth filters well up to 40 
Hz. This is far above the controller bandwidth of 5 Hz. Any 
error induced by this approximation is accounted for by the 
additive uncertainty weights. A first-order Pad6 approximation, (m), is included to model the 5 ms sample time delay 
associated with the real time control computer. The complete 
block diagram is shown in Fig. 7. 

The block diagram is reformulated into the LFT gen- 
eral framework to design control laws using the p-synthesis 
methodology. A diagram of the LFT is shown in Fig. 8. The 
dimensions of the A blocks are: 3 x 3 for A,, 3 x 3 for A2, and 
6 x 4 for A3. A, is associated with the additive uncertainty, 
A2 with the multiplicative input (output) uncertainty, and A3 
is the performance block. All the Ai blocks are full blocks. 
Either input or output multiplicative uncertainty is included in 
the control problem formulation. In this set of designs, input 
and output uncertainty are not included simultaneously. 

D. Control Designs: Sensor Noise Only 

Six controllers are synthesized based on the block diagram 
in Fig. 7 with no additive or multiplicative inputJoutput un- 
certainty. The sensor noise weight, senswt, is varied between 
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7.29 8.4 

10.00 7.1 
14.44 5.8 
17.00 4.2 
20.25 3.9 
25.00 2.9 

actuator 
limits 

per formance 

sensor . noise . disturbance 

14.00 

8.00 
4.75 

4.75 

2.12 

Controller 

K l s n  

Unstable 

Unstable 

Unstable 

Unstable 

0.87 

Controller Predicted Experimental 

Order senswt perfwt p Performance Performance 

32 4 x 15.00 0.99 ,067 Unstable 

4 x and 2.3 to account for uncertainty and provide 
robustness in the control designs. Table I1 contains a list of 
the control law parameters used in the design and the results 
of implementation on the flexible structure experiment. Each 
control design is synthesized to achieve a robust performance 
p value of 1. 

Controllers Klsn  through K b n  destabilize the experimen- 
tal structure when they were implemented due to the excessive 
gain at high frequency. Increasing the level of the sensor noise 
to the magnitude of the flexible mode peaks, KGsn, leads to a 
reduction in the controller gain at low and high frequency. This 
stabilizes the system, and, in turn reduces the performance of 
the controllers. Controllers Klsn  through K6sn were stable 
and achieved their predicted performance in simulations using 
the nominal model. 

This is an extreme example of the shortcomings associated 
with designing control laws based solely on additive noise 
models to account for model errors. It illustrates, though, the 
need to provide information in the model formulation as to 
the fidelity of the model across a range of frequencies. The 
structural model is sufficiently accurate between 1 and 5 Hz 
such that by accounting for the unmodeled dynamics with an 
additive uncertainty model a controller can be synthesized 
which stabilizes the system and performs well when imple- 
mented. Development of improved uncertainty models can 
further increase controller performance. 

K2sn 

K3sn 

K4sn 

K5sn 

K6sn 

TABLE I11 
PARAMETERS FOR CONTROL DESIGN WITH INPUT MUTPLICATIVE UNCERTAINTY 

28 4 x lo-* 
26 4 x lo-' 

30 9 x lo-' 
30 1.15 

32 2.30 

Controller 
Open-loop 

Klam 
K2am 
K3am 
K4am 
K5am 
K6am 
K7am 
If Sam 
K9am 
KlOam 

Predicted 
Performance 

1.000 
,077 
.081 
.091 
,100 

,119 
,141 
,172 
.238 
,256 
,345 

Experimental 
Performance 

1.000 
0.087 
0.087 
0.073 
0.082 
0.093 
0.121 
0.142 
0.123 
0.104 
0.161 

- 

B - 
- 

1.02 
1.02 
1.01 
1.02 
1.03 
1.00 

1.08 
1.07 
1.02 
1.02 - 

E. Control Designs: Input Multiplicative Uncertainty 

A number of controllers are synthesized using additive 
uncertainty and input multiplicative uncertainty descriptions 
to account for variations in the model. The output uncertainty, 
sensu, is set to zero in Fig. 7 for this set of designs. Ten 
controllers are formulated for input multiplicative uncertainty 
level varying between 0 and 25%. Robustness and performance 
of the control designs are traded off in the design process, as 
one is increased the other is decreased. Each design is iterated 
on until it achieves a p value of approximately one. This 
is done by selecting a desired level of input uncertainty and 
scaling the performance requirement, perfwt, until the control 
design achieves a p value of one. 

The value of p is highest within the frequency range of the 
flexible modes to be controlled. Attenuation of these modes 
is the limiting factor in the controller design, which is often 
the case in lightly damped, flexible systems. The level of the 
accelerometer noise was determined from the manufacturers 
specifications of 0.2% error. The senswt is fixed at 2 x lop3 
in all designs. The actuator weights, m g w t  and rutewt, are 
selected to correspond to the magnitude and rate limits of the 
actuators. For these control designs, imagwt is set to 80 and 
the ratewt is set to 3770. Table I11 contains the parameters 
varied in the control designs. 

The 10 controllers synthesized are implemented on the 
flexible structure experiment and compared with the open- 
loop response. Experimental data is derived from the filtered 
noise input to air actuator 1 and accelerometer 1 ,  2, and 3 
measurements. The open-loop time and frequency responses of 
accelerometers 1,2, and 3 are shown in Fig. 9. The closed-loop 
experimental time and frequency responses of accelerometers 
1, 2, and 3 with controllers K3am and KlOam implemented 
are shown in Figs. 10 and 11, respectively. The experimental 
input disturbance to air actuator 1 was a sine sweep from 1 to 5 
Hz, Table 111 contains the experimental data of the closed-loop 
experiments for each control design. 

The original interconnection structure with the plant model 
and weights shown in Fig. 7 has 32 states. During the D - K 
iteration procedure, the inputs and outputs associated with the 
two uncertainties, A, and A2, are scaled on the left and 
right with stable, minimum phase proper transfer functions. 
Second order D-scalings are used to scale the first set of 
uncertainty inputs and outputs and constant D-scalings are 
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Fig. 11. K l O a m  closed-loop time (sensor 1) and frequency response. 
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Fig. 10. K 3 a m  closed-loop time (sensor 1) and frequency response. 

used for the second set. The resulting controllers, Klam 
through KlOam, are 44th order. The balanced realization 
model reduction technique is used to reduce the state order of 

the controllers. The order of the controllers is shown in Table 
111. The controller order was selected such that the lower order 
controller would have less than a 1% effect on the closed-loop 
,U value. 

Performance is measured as the maximum closed-loop 
peak response to the maximum open-loop response since the 
objective is to attenuate the first six flexible modes. The ratio of 
the maximum peak of the closed-loop controllers to the open- 
loop response corresponds to the experimental performance. 
The best performance, 0.073, representing a reduction of the 
maximum frequency domain peak by 13.7, is achieved for the 
controller designed with 2.25% input uncertainty. Controllers 
designed for higher and lower uncertainty levels than this 
exhibited reduced levels of performance. Klam and K2am 
achieved performance levels less than predicted by the design 
model, and all other control designs surpass their predicted 
performance. Fig. 12 is a plot of the designed performance 
level as a function of input multiplicative uncertainty level. 
Circles, “0,” represent the experimental values, and “X” 
represents the model. 

One can interpret this graph as one interprets Fig. 5. The set 
of models described by the problem formulation for designs 
Klam and K2am do not encompass the physical system, since 
the worst case plant description the performance levels are 
higher than achieved when implemented on the experimental 
structure. One can infer that the controllers are optimized 
for an inaccurate model. The set of plant models defined 
in the control design problems for K3am through KlOam 
provides a better representation of the physical system than the 
sensor noise control design model due to the experimental and 
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Predicted versus experimental performance for input uncertainty 

performance levels corresponding to the designed performance 
level. The model sets for control designs K3am through 
KlOam provide a more accurate description of the physical 
system for control purposes. 

Selecting an appropriate level of uncertainty for this prob- 
lem description provides the highest level of performance on 
the structure. Increasing the input uncertainty level results in 
more conservative controllers which emphasize robustness by 
reducing the amount of control action. These results indicate 
that selection of uncertainty descriptions has a direct bearing 
on the performance and robustness of the controllers. 

F. Control Designs: Output Multiplicative Uncertainty 

A set of controllers is synthesized with additive and mul- 
tiplicative output uncertainty to account for errors in the 
design model. The problem formulation is based on the 
interconnection structure in Fig. 7 with the input uncertainty 
scaling, actu, set to zero. Nine control laws are formulated 
for the output scaling, sensu, varying between 0.1 and 0.5. 
This is analogous to the output multiplicative uncertainty 
varying between 1% and 25%. Each control law is designed 
for a specified level of output uncertainty, sensu, with the 
performance weight, perjivt, scaled to achieve a p value of 
one. 

The set of nine controllers uses the same noise weight, 
senswt, magwt, and ratewt, as the input uncertainty designs. 
Table IV contains a list of parameters varied in the output 
multiplicative uncertainty control designs and experimental 
results. Each controller is implemented on the structure and 
an experimental frequency response is generated from the air 
disturbance input to the three accelerometer outputs. Klam is 
included because it was designed with zero inpuvoutput multi- 
plicative uncertainty. During the D - K iteration procedure the 
inputs and outputs associated with the two uncertainties, A, 
and A2, are scaled on the left and right with stable, minimum 
phase proper transfer functions. As in the input multiplicative 
uncertainty case, second order D-scalings are used to scale 
the first set of uncertainty inputs and outputs and constant D- 
scalings are used for the second set. The resulting controllers 
are 44th order. The same criteria and techniques are used 
to reduce the controller order. The order of the controllers 
implemented are shown in Table IV. 

TABLE IV 
PARAMETERS FOR CONTROL DESIGN WITH OUTPUT MUTIPLICATIVE UNCERTAINTY 

Controller 
Dpen-loop 

Klam 
K2sm 
K3sm 
K4sm 
K5sm 
K6sm 
K7sm 
K8sm 
K9sm 

KlOsm 

- 
w f w t  - 
- 

13.0 
11.60 
10.95 
10.40 
9.70 
9.10 
8.80 
8.40 
8.10 
7.75 

Predicted 
Performance 

1.000 
.or7 
,086 
,091 
.096 
.lo3 
,110 
.114 
,119 
,124 
.I29 

Experimental 
Per form an c e 

1.000 
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0.084 
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Fig. 13. 
designs. 

Predicted versus experimental performance for output uncertainty 

Controller K3sm achieved the highest level of performance, 
0.072. Klam had a performance level less than predicted, 
and all other controllers exceeded their predicted perfor- 
mance. Fig. 13 provides a comparison between the predicted 
performance of the model, given the designed uncertainty 
level and the experimental data. Note the consistent trend 
in the data between the theory and the experiments. As 
expected, increasing the output uncertainty weight increases 
the robustness characteristics of the control law at the expense 
of the performance. The high correlation between the exper- 
imental and predicted performance levels indicate that the 
nominal model with output multiplicative uncertainty provides 
an excellent model of the experimental flexible structure for 
the purpose of control. The results in Table IV and Fig. 13 also 
indicate that it is more important to have some reasonable 
level (1-17%) of uncertainty and the correct location of 
the uncertainty rather than the exact amount of uncertainty 
included in the problem formulation. This has implications 
in the development of nominal and uncertainty models using 
system identification techniques from experimental data. 

One explanation for why the output multiplicative uncer- 
tainty control design model closely parallels experimental 
results is due to the structural model. The nominal structural 
model was derived using a single-inpuvmulti-output system 
identification technique. It is found that the input directions 
closely match the experimental data. The output directions 
vary slightly due to method of curve fitting the experimental 
data. Therefore output multiplicative uncertainty by itself is 
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likely to better characterize the modeling error from fitting the 
three sensor measurements from a single input. 

VI. SUMMARY 
An accurate representation of the physical system by a 

nominal model and an uncertainty description provides an 
excellent design model for use in the p-synthesis techniques. 
The addition of uncertainty models is required because the 
inclusion of sensor noise models alone will not provide the 
required robustness at desired locations in the plant. A series 
of controller were developed using input uncertainty models 
that reflect a strong dependence of the controllers on accurate 
input signals to the system. As the input uncertainty level 
is increased in the control design model, there is a marked 
decrease in the closed-loop performance. Control designs for 
the flexible structure experiment are less sensitive to output 
uncertainty, which provides a very accurate description of the 
system when combined with the nominal model for control 
design. The output multiplicative control designs exhibit better 
performance both theoretically and experimentally as a func- 
tion of uncertainty. The theoretical and experimental results 
indicate that structured uncertainty modeling plays a major role 
in the trade-off of performance requirements and robustness 
properties of synthesized control laws. In fact, it is interesting 
to note that the location and structure of the uncertainty in 
the problem formulation may be as important as the level of 
uncertainty. 

The results presented in this paper indicate that a number 
of improvements can be made in modeling and identification 
methods for control of flexible structures to improved perfor- 
mance. Identification methods for robust control should pro- 
duce both nominal models with additive noise and structured 
uncertainty models for incorporation into the control problem 
formulation. These identified models should then be used to 
improve the first principles model of the structure leading 
towards a more integrated framework in which structures and 
control design for flexible structures can be performed. 
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