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Model Validation: A Connection Between 
Robust Control and Identification 

Roy S. Smith, Member, IEEE, and John C. Doyle 

Abstract-Modern robust control synthesis techniques aim at 
providing robustness with respect to uncertainty in the form of 
both additive noise and plant perturbations. On the other hand, 
the most popular system identification methods assume that all 
uncertainty is in the form of additive noise. This has hampered 
the application of robust control methods to practical problems. 
This paper begins to address the gap between the models used in 
control synthesis and those obtained from identification experi- 
ments by considering the connection between uncertain models 
and data. The model validation problem addressed here is: given 
experimental data and a model with both additive noise and 
norm-bounded perturbations, is it possible that the model could 
produce the observed input-output data? This problem is stud- 
ied for the standard H , / p  framework models. A necessary 
condition for such a model to describe an experimental datum is 
obtained. Furthermore, for a large class of models, in the robust 
control framework, this condition is computable as the solution 
of a quadratic optimization problem. 

I. INTRODUCTION 

OBUST control theory now gives the engineer the power R to describe physical systems with a model which in- 
cludes a particular type of uncertainty: block structured, 
norm-bounded uncertainty entering the model in a linear 
fractional manner. Linear models in which the only uncer- 
tainty is in the form of additive noise cannot account for a 
loss of stability not predicted by the nominal model. Robust 
control models can capture this feature, essentially being able 
to include unmodeled but bounded dynamics. 

Once a system is modeled, and the engineer is confident of 
the applicability of the model, the theory gives techniques for 
designing closed-loop systems which are theoretically robust. 
The theory makes no statements about the performance or the 
stability of the actual physical system. Therein lies a problem 
for the engineer. Before the robust control methods can be 
applied, the uncertainty must, in some sense, be identified. 
Current identification methods are well developed in the case 
where all of the residuals, or uncertainty, are attributed to 
additive noise. For models with both additive noise and 
norm-bounded perturbations, no such identification methods 
exist. 
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Once a model has been determined, perhaps by ad-hoc 
methods, there must be some method of evaluating its appli- 
cability to the actual physical system. The engineer must be 
confident that the model will describe all input-output behav- 
iors of the system. This condition can never be guaranteed 
but it is possible to test a necessary condition: that the model 
be able to describe all observed input-output behaviors of the 
system. 'lhis is simply the model validation question to be 
discussed here. 

A .  Context 
The model validation question posed above can be consid- 

ered for any model of a physical system. This paper will 
restrict itself to models fitting the standard Ha and p synthe- 
sis framework. To be directly applicable to a particular 
design framework, the assumptions of that framework also 
have to be applied to the model validation problem. The 
choice of design/analysis framework determines the proper- 
ties of the model validation problem and the experiments 
which are applicable to the formal model validation study. 

In particular, this paper will assume that all unknown 
signals (noise and disturbances) are signals of bounded en- 
ergy. Furthermore, it is assumed that the measurements of 
the plant inputs and outputs are available in the frequency 
domain. These assumptions are very restrictive when applied 
to experiment design. Smith [l] does give an example of a 
useful experiment and the application of the techniques dis- 
cussed here. 

The model validation problem can be applied to other 
design paradigms. Poolla [2] is investigating its application to 
the discrete time, bounded energy case. The application to I ,  
problems is also currently under investigation. The signifi- 
cance of this approach is that it is applied in the context of a 
design/analysis methodology. The fact that application to 
current, popular methodologies lead to a very restricted set of 
allowable experiments can be taken as an argument for 
developing design methodologies with more realistic assump- 
tions on the signal sets. 

Standard approaches to identification typically use stochas- 
tic assumptions on the noise. Furthermore, dynamic uncer- 
tainties are usually neglected. Ljung [3] discusses the stan- 
dard identification approaches in detail. Identification in Ha 
is an area of growing research interest. The reader is referred 
to the works of Helmicki, Jacobson, and Nett [4] and [ 5 ] ,  Gu 
and Khargonekar [6 ] ,  M&la [7], and Makila and Partington 
[8]. Although these approaches are encouraging, the results 
to date do not result in models matching the Ha/p design 
methodology. In most of the work referenced above, only 
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additive, rather than fractional perturbations are considered 
and the assumptions on the noise do not match those used in 
the design methodology. More importantly, the underlying 
system is assumed to be linear and time-invariant. Some 
assumptions about the systems being identified are required 
in order to obtain results on the suitability of any identifica- 
tion approach. 

The approach of this paper is significantly different in that 
no assumptions on the nature of the physical system are 
needed. Model validation is a test of a given model against 
experimental input-output data. The assumptions of the de- 
sign framework apply to the model, not the physical system. 

B. Organization of the Paper 
The paper is organized as follows. Section I1 introduces 

robust control models. The assumptions most commonly used 
in the practical application of the H, / p  design methodology 
are presented. Model validation is discussed in detail in 
Section 111. A generic model for identification and validation 
is introduced and the model validation problem is stated 
formally. 

Section IV considers a constant matrix version of the 
model validation problem. This is shown to be strongly 
connected with the p problem. The approach to p developed 
by Fan and Tits [9] is applied to the model validation 
problem. A function $ is defined and shown to apply to 
model validation in the same manner that p applies to robust 
analysis. 

Section V develops a “skewed” p problem. A skewed 
version of the constant matrix model validation problem is 
also developed. This can be viewed as determining the 
minimum amount of additive noise, in the presence of unity 
bounded perturbations, required to describe the experimental 
observation. Skewed p (or $) problems inherit the convexity 
properties of the nonskewed versions. The results of Section 
V are given without proof. For full details refer to [I]. 

In Section VI the original model validation problem pre- 
sented in Section III is reconsidered. A necessary condition 
for the model to describe the experiment is given in terms of 
constant matrix, skewed, model validation problems at each 
frequency. Section VI1 concludes the paper with a summary 
of the results and suggests future research directions. 

C. Notation 

Capital letters will denote matrices or matrix valued func- 
tions. AT is the transpose of A ,  and A* is the complex 
conjugate transpose. if( A )  is the maximum singular value of 
A ,  dim ( A )  is the dimension of A ,  and ker ( A )  is the kernel 
of A .  The convex hull of a set S is denoted by CO ( S ) .  The 
inner product of two vectors x, y E en, is denoted by (x, y ) ,  
where ( x ,  y )  = x*y. 

Block diagrams will be used to represent interconnections 
of systems. For example, the generic robust control model is 
shown in Fig. 1. This diagram represents the equations 

2 = P , , v  + P,,w 
e = P 2 , u  + P2,w 
U = Az.  

n 

e -  W 

Generic model structure including uncertainty Fig. l .  

In terms of the input w and output e, this can be expressed 
as a linear fractional transformation (LFT) 

e =  [ P 2 1 A ( 1 -  P , , A ) - ’ P 1 2 +  P , , ] w = F , ( P , A ) w  

where the subscript U indicates that A is used to close the 
upper loop. 

11. ROBUST CONTROL MODELS 

The framework presented here follows that of Doyle [lo]. 
A detailed presentation of more general analysis results is 
given by Packard [ 111. The set of uncertain models will be 
formalized with specific assumptions on P(s) ,  A, and the 
unknown signals w. Significantly more generality is possible 
but will complicate the exposition. Note that the assumptions 
given here are those used in the majority of the practical 
applications of H, and p synthesis to date. These assump- 
tions also reduce analysis problems to constant matrix prob- 
lems at each frequency. 

Linear models, for example, P ( s )  or simply P ,  are as- 
sumed to be in RH,, real rational functions with 

IIP(S)ll, = supG[P(jw)] 00. 
w 

Unknown signals w are assumed to be elements of BL,, 
where 

For a vector valued w, Iw( t)l denotes the Euclidean norm of 

The generic structure of the robust control model is shown 
in Fig. 1. The perturbations A are assumed to be causal, 
stable, linear, time-invariant, and block diagonal, with m 
square blocks each of dimension k i ,  i = 1; e ,  m. The 
assumption of square blocks is without loss of generality. 

Define A as the set of all perturbations of the prescribed 
structure 

A = {diag(A, Am)(dim(Ai) = ki X k ; } .  

The unit ball of A is given by 

At each frequency, w ,  A,(jw) E Gkixki ,  and Z(A(jw)) I 1. 
The robust control model is represented by 

e = F,(P ,A)w,  AEBA.  

II 1 
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The model is robustly stable iff it is nominally stable and 

S U P P ( P ( j W ) )  < 1. 
w 

A formal definition of p is given in (6). 

111. MODEL VALIDATION 

An engineer is faced with the problem of selecting good 
models for the analysis of a system and the synthesis of 
controllers. Robust control models are more complex in that 
uncertainty can now enter in a fractional manner and bounds 
on that uncertainty must be chosen. No theory for systemati- 
cally doing this exists. It is in fact a poorly posed problem; 
the physical system can only be observed by input-output 
measurements and, modulo considerations of observability 
from a particular output the residuals can be attributed either 
entirely to additive noise or entirely to norm-bounded pertur- 
bations. In practice, an engineer will run many experiments 
to attempt to isolate the effects of noise from those of 
perturbations. 

An assumption, inherent in the use of any model, is that 
the model can describe any observed input-output behavior 
of the physical system. It is not possible to test this, however, 
it is possible to find a necessary condition. This is just the 
model validation question: Can the model account for all of 
the previously observed input -output behavior? This will be 
formulated more rigorously in the context of robust control 
models in Section 111-B. 

In the case where the residuals are attributed entirely to 
additive noise, identification procedures can give a noise 
model which guarantees that the model is consistent with all 
past data. For robust control models no such methods exist. 
For these models, validation techniques are required to test 
the suitability of the model. 

The model validation theory described here has two addi- 
tional uses. Large systems of many interconnected uncertain 
components can lead to models with many perturbation 
blocks. For simplicity in the design process, an engineer may 
wish to reduce the complexity of the interconnection struc- 
ture by aggregating several perturbation blocks into a single 
“covering” block. Model validation gives a means of testing 
these reduced models against experimental data from the 
physical system. 

Of significant practical engineering interest is the problem 
of fault detection. Given a design model and a controller in 
operation, the model validation theory gives a means of 
continuously assessing whether or not the physical system is 
still described by the design model. It will be seen that the 
techniques presented here produce the perturbation and noise 
that come closest to satisfying the conditions of the model. 
Gradual deterioration in a system may manifest itself as 
increasing perturbations and/or noise required for account- 
ability of the data. A sudden failure may be identified by a 
sudden jump in the size of the required perturbations and/or 
noise. 

A .  A Generic Model for  IdentiJication and Validation 
For the purposes of discussing identification and model 

validation, the generic structure, illustrated in Fig. 1 is 

refined. Fig. 2 shows the structure that will be used through- 
out as the generic identification and model validation struc- 
ture. In identification experiments certain inputs to the system 
are known. These are partitioned from the remaining, un- 
known inputs and denoted by U .  As in the previous sections, 
w represents the unknown inputs from a specified set. The 
output y represents the measured outputs and is now also 
assumed to be known. 

B. Formulation of the Model Validation Problem 
It is assumed that the model P and block structure A are 

given, perhaps by ad-hoc identification methods, or first- 
principles modeling. In practice, a series of experiments 
would have been run. The problem posed here is with respect 
to a single experiment. In general, one would apply these 
methods to all of the experimental data. 

Referring to the model structure of Fig. 2 ,  the model 
validation problem can be formulated as follows. 

Problem 3.1 (Model Validation): Given a model P ,  
with 

SUPP(Pl l ( j4)  < 1 
w 

and an experimental datum (U, y ) ,  does there exist ( w ,  A),  
W E B L , ,  A E B A ,  such that 

Y = F , ( K  A ) [  3. (1) 

This simply asks the question “is there an element of the 
model set and an element of the unknown input signal set 
such that the observed datum is produced exactly?” Any 
( w ,  A )  pair, with A having the correct structure ( A  E A ) ,  
meeting the equality constraint (1) will be referred to as 
feasible. If a feasible ( w ,  A)  also satisfies w E BL, and 
11 A I( o3 5 1, it is referred to as admissible. The model valida- 
tion question is simply, does there exist an admissible ( w ,  A)? 
The approach taken will be to find the smallest feasible 
( w ,  A).  

Note that no statement is made relating the particular 
element of the model set or the particular element of the input 
signal set to any physical system or signal. Such a relation- 
ship does not exist. If no ( w ,  A) pair meeting the above 
requirements exists, then the model cannot account for the 
observed behavior. Such a tool is of use in culling inappro- 
priate models from a group of candidate models. 

The model validation test is therefore a necessary condition 
for any model to describe a physical system. Model valida- 
tion is a misleading term; strictly speaking it is never possible 
to validate a model, only to invalidate it. The fact that every 
experiment can be accounted for in this manner provides 
some confidence, but little hard information about the appli- 
cability of the model. There may be experiments, as yet 
unperformed, which will invalidate the model. 

For those concerned with the requirement that the datum 
be produced exactly, note that physically realistic models will 
have some weighted part of w adding to y thereby modeling 
the effect of measurement noise. Note also that by assump- 
tion, the problem is restricted to the consideration of models 
which are robustly stable. This is a reasonable assumption 
from an engineering point of view, but will be relaxed in 
Section IV-A. 
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Fig. 2. The generic structure for identification and model validation 
problems. 

IV . MODEL VALIDATION -CONSTANT MATRIX CASE 
The model validation problem is now considered for the 

constant matrix case. In other words, P and A are complex 
matrices and y ,  U ,  and w are complex valued vectors. ( 1  w 11 
denotes the Euclidean norm and A E BA implies that A has 
the appropriate structure and 5(A)  5 1 .  Section VI will 
show that the solution of Problem 3.1 is obtained in terms of 
the constant matrix problems studied here, and in Section V. 

A constant matrix model validation problem is now posed. 
This is slightly more general than the constant matrix version 
of Problem 3.1 in that the assumption about the robust 
stability of P has been removed. 

Problem 4. I (Model Validation - Constant Matrix): 
Given a model P and an experimental datum ( U ,  y ) ,  what is 
the smallest 1)  w 11 and 1) A 11, A E A such that 

The following assumptions are introduced and applied to 
the problem. 

Assumption AO: y - PZ3 U # 0, y - P23 U E Range[ P2,  
PZ2]  and dim(ker[P2,P2,]) > 0. 

Assumption AI:  For all A E A such that det (Z - P, ,A)  
= 0, uEker(Z - Pl,A), U # 0, implies that P21u # 0. 

Assumption A0 is required to ensure that the problem is 
nontrivial. If A0 is not satisfied then either no (w, A )  exists, 
or a unique (w, A )  describes the observed datum. In either 
case, the solution to Problem 4.1 is immediate. Assumption 
A1 essentially states that the effect of every destabilizing A 
can be observed from the output y .  This is a reasonable 
assumption for any model used to describe a physical system. 

The solution of Problem 4.1 is given by Theorem 4.3. 
Before stating this, a considerable amount of machinery must 
be introduced. 

A .  Formulation in Terms of Signals 
Problem 4.1 will be reformulated as a series of computable 

conditions on the signals present in the model (see Fig. 2). 
For convenience, define x as the vector of unknown signals 

x =  [;I. 
Those vectors, x ,  which correspond to admissible (feasi- 

ble) (w, A) pairs will also be referred to as admissible 
(feasible). Problem 4.1 can be reformulated as an optimiza- 
tion problem in terms of the vector x ,  by expressing the 
constraint A E A as a series of norm constraints on the block 
components of x .  Squaring these constraints results in an 

optimization problem with indefinite quadratic inequality con- 
straints and one linear equality constraint. This optimization 
problem is studied in detail by Smith [ l ] ,  and Smith and 
Doyle [12], and will not be discussed further here. 

For notation convenience, it will be assumed that dim ( y )  
= dim(w). This is without loss of generality, as P can be 
augmented with rows or columns of zeros. Define Ri  as a 
projection of x onto ui for i = 1, * . e ,  m ,  and the projection 
of x onto w for i = m + 1. 

block row (0 ,  ; * , O i p  ,, Zi, Oi+, ; - * , O m ,  O w ) ,  
i =  l ; - - , m  

Ri = otherwise 
blockrow ( O I ; * * , O m ,  Zw), 

i = m + l  I (2) 

where dim(Oj) = ki x kj, dim(Zi) = kj X k i ,  dim(0,) = 
ki x dim(w), and dim(Iw) = dim(w) X dim(w). 

The constraint that 

Y = F, (P ,  A,[ 3 = Rm+lP[  3 (3) 

is reformulated in terms of a subspace. Define x0 as the 
solution to 

Y - p 2 3 u  = [ p 2 1 p 2 2 ]  

that is orthogonal to the kernel of [P2 ,P2 , ] .  Note that, by 
Assumption AO, xo exists and xo # 0. Define a subspace 2- 
by 

X= span ( xo)  @ ker [ PZ1 P,,] , (4) 
As usual, the notation E X  will be used to denote the unit 
ball of this subspace. For every i E X such that ( xo,  i )  # 0,  

II XOII 

( X O ?  2) 
x = -  

satisfies the equality constraint (3). 
The discussion which follows will define a new system p .  

This is motivated by the consideration of a more general 
analysis problem involving the inclusion of known signals. 
Space restrictions preclude giving the full motivation for the 
approach. The interested reader is referred to [l]. 

Define by 

[x.;lp2]+m[ Pll P I 2  

1 p 1 3 u x t  ; ] ( 5 )  

where the zero blocks have been inserted in order to make 1? 
square. 

B. Formulation as a p Type Problem 
It will be shown that the model validation problem can be 

cast into a framework reminiscent of the Fan and Tits [9] 
approach to the calculation of p.  The following theorem (due 
to Fan and Tits [9]) states that p is equivalent to a maximiza- 
tion problem over the unit sphere. To maintain notational 

ll 1 
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consistency in the following, the assumed block structure has 
m + 1 blocks, and R j  again defines a block projection refer 
to (2). 

Theorem 4.2: 

p ( M )  = 7,y;r=l {Y 1 lIR;XllY = IIRiMXll, 

i = l ; . . ,  m + I}  

(6) 
max {Y 1 1IR;XIlY 5 IIRiMXII, - - 

7 ,  Ilxl l=l  

i = l;.., m + I} .  

(7) 

Now consider the above formulation with the additional 
restriction that x is constrained to a subspace. Define a 
function $ ( M ,  X) of a matrix M E G " ~ "  and a subspace 
FG 62" as 

i = l ; . . ,  m + 1 ) .  (8) 
Note that this definition is equivalent to p ( M )  when X =  62". 
The function $ ( M ,  X )  can now be used to state the main 
result of this section. 

Theorem 4.3: Assume that Assumption A0 holds, is 
given by-(5), and X is given by (4). 

If $( P, 3) = 0, then no feasible (w, A) for Problem 4.1 
exists. 

If $ ( p ,  X )  = a > 0, and Assumption A1 is satisfied, 
then there exists a feasible (w, A) for Problem 4.1 with 

1)  wJ )  I a- ' ,  and ) ) A ) )  I a - ' .  

Furthermore, there is no feasible (w, A )  such that both 
inequalities are strict. 

Proof of Theorem 4.3: To prove the first part it will be 
shown that if a feasible (w, A) exists, $ ( P ,  X )  > 0. As- 
sume a feasible (w, A) exists. Define 

where 

U = ( I  - P l l A ) - ' ( P 1 2 ~  + P , , u ) .  

The feasibility of A ensures that the above inverse is well 
defined. Then, for i = l ; . . ,  m ,  

R;x = AR,([ P11P12] x + P,,u) 

= AR,PX 
and so 

IIRixII I I IAII IIR;'XII. (9) 
Furthermore, 

llRm+lxll = l lwl l  
and as 11 Rm+lPxII = 1 

l l ~ r n + l X I l  I l l~,+1~xI l -  (10) 

Note that X E  F by assumption, and if x is scaled such that 
(1 XI( = 1, the inequalities of (9) and (10) still hold, The 
scaled x and 

y = min { (1 wll- ' ,  l lAl)- '}  > 0 

satisfy the constrajnts of the $(P, X )  maximization (8). 
Consequently, $ ( P ,  T) 2 y > 0. 

To prove the second part of Theorem 4.3, consider the 
case for i = rn + 1. $(P, X )  = a implies that there exists 
x E BF, such that 

It is claimed that Assumption A1 is sufficient to guarantee 
that ( xo, x )  # 0. To see this assume that ( xo, x) = 0, and 
note that a > 0 implies that R,+ Ix = w = 0. Furthermore, 

X= span ( xo) ker [ P2,P2,]  

and so X E  X, (xo, x) = 0 implies that x ~ k e r [ P ~ , P , , ] .  
However, it has already been shown that x is of the form 

and so U E ker ( P Z 1 ) ,  contradicting Assumption A l .  There- 
fore, Assumption A1 guarantees that (xo, x) # 0. 

Now define 

Note that 

-- - 1  
(xo9 J z )  

II xo II 
implying that J z  satisfies the equality constraint [see- (3)]. 
Note that Z satisfies the norm constraints of the $ ( P ,  Y )  
maximization. Consider the norm constraint for i = m + 1 

The norm constraints for i = 1 ,  * * e ,  m are 

= II Ri(P1lV + P12W + Pl3U) I1 
= II %II. 

Choose 
1 

U;?:, if fi z o 

if 2; = 0. 

Note that V = A ?  and that 

I a-I.  
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Hence, we have constructed a feasible (w, A )  pair with 
11 wJ1 5 a-' and IIAJI I a- ' .  

To prove the final statement of the theorem, note that if 
there exists a feasible (w, A) with 1) A 1) < a-  and 1) w 1) < 
a- ' ,  then for some E > 0, (IA((  I (CY + E ) - '  and 1) w1J I 
(a + E ) - ' .  The construction of a scaled x ,  given in the first 
part of the proof, gives $(!, X) L a + E ,  contradicting the 

b 
To ficd the minimum norm (w, A) pair, one-would calcu- 

late $( P ,  X ) .  It is interesting to note that $( P ,  X )  can be 
bounded above giving a simple lower bound on the minimum 
norm w and A. 

with an associated uncer- 
tainty structure A and a subspace X, X C  e", $ ( M ,  X) I 

theorem statement that $( P ,  X) = a. 

Lemma 4.4: Given M E  (G 

A M ) .  

$ ( M ,  X) = ma' (71 IlRixIIY 5 IIRiMxII, 

Proof of Lemma 4.4: 

Y,xEx, l lx l l= l  

i = 1;.*, m + 1)  

= 4 M ) .  
b 

This leads to the following simple bound. 
Theorem 4.5: There is no feasible (w, A) for Problem 

4.1, such that 

11 w I I  < p(F)- ' and  11A11 < p ( F ) - ' .  

Proof of Theorem 4.5: Assume that there exists a feasi- 
ble (w,A) such that ((w)) < p(l?)- '  and ( ( A ( (  < p( I?) - ' .  
The_orem 4.3 then implies that either 1) w 1) OK 11 A ( 1  is equal to 
$ ( P ,  X ) - ' .  Therefore $(F, X )  > p(P)  contradicting 
Lemma 4.4. b 

Note that p(p) i c  Theorem 4.5 can be replaced by any 
upper bound for $(P, X). 

C. A Geometric Interpretation of $(M, X) 
Fan and Tits [15] define and use a generalized numerical 

range function to calculate p ( M ) .  It will be shown that the 
same approach can be used to calculate $ ( M ,  X). By doing 
this we will also show that, like p ( M ) ,  $ ( M ,  X) is equiva- 
lent to a convex optimization problem for certain block 
structures. 

The numerical range, or field of values, of a Hermitian 
matrix N is defined as the set 

A generalization of the numerical range is the following. 
Consider m + 1 Hermitian matrices Ni, i = 1 ,  - e ,  m + 1 
of dimension n x n. Define a vector valued function of x 
where each component of the vector v is given by 

vi = x*iyx. 

Note that m + 1 matrices are considered to maintain nota- 
tional consistency with the definitions of p( M )  and rl, ( M ,  X ) 
in Section IV-B. 

Define as the generalized numerical range, the range of 
this function when the domain is restricted to ( 1  xII = 1 

W(Nl,.*.,N,+l) = ( v J v j  = x*N,x, IIxII = I} .  

The following lemma is proven by Fan and Tits [14] and 
WI. 

Lemma 4.6: If m = 1, or m = 2 and n > 2, then 
W ( N , ; . - ,  N,,,) is a convex set. 

Now consider the application of the numerical range to the 
$ ( M ,  2") problem. To simplify the notation assume that I/ 
is an orthonormal matrix of basis vectors for the subspace 
X, and for all X E  X there exists q given by 

x =  vq. (12) 

Note that for all 1) q ) )  = 1, x defined by (12) has the proper- 
ties ( 1  = 1 and X E  X. Define 

N ( a )  = {Nl(a)? .** ,  Nm+l(a)} 
where 

IV.(a) = aV*R?RiV - V*M*R?R;MV. 

Note that the domain of the numerical range function has 
dimension equal to dim (7). The numerical range of N( a), 
denoted by W(a) ,  is defined as the image of the unit sphere. 

W ( a )  = ( V J V ;  = rl*IV,(a)q, ) ) ? ) I  = 1 ) .  

The following lemma is immediate from Lemma 4.6 by 
noting that the numerical range function W ( a )  is defined by 
m + 1 Hermitian matrices. 

Lemma 4.7: If m = 1 ,  or m = 2 and dim ( q )  > 2, then 
"(a) is convex. 

For each a, W ( a )  is a set in Rim+'. For m I 2 this set is 
convex provided dim (7) > 2. In the p( M )  case considered 
by Fan and Tits, there is no subspace restriction and the 
construction alone is sufficient to guarantee that dim ( 7 )  > 2. 

In the p ( M )  case (6) ,  the fact that there exists an x such 
that all constraints are met, exactly implies that 0 E W(a) for 
a = P ( M ) ~ .  In the $ ( M ,  X )  case, the maximization prob- 
lem may only have a solution with a strict inequality on one 
of the constraints. Consideration of the origin is no longer 
sufficient; the quadrant where all components of v are non- 
positive must also be included. Therefore, define 

v - =  { v ( v ;  I O ) .  

The following theorem gives an alternative representation for 

Lemma 4.8: If a I $ ( M ,  X)', then W ( a )  n v-# 0 ,  
and if a > $ ( M ,  X) ' ,  then W ( a )  n v-= 0.  

Proof of Lemma 4.8: Assume that a I $ ( M ,  X ) 2 .  As- 
sume also that 5? is a solution to the $ ( M ,  X) maximiza- 
tion. Then FE X and 

$ ( M ,  $1. 

) ) R ; z ) J ~ ~ / ~  I ) ) R ~ M T ~ ~ ,  i = I;. . ,  m + 1 .  

II I 
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As j 2  E X there exists 7 given by X = Vij. Now consider F 
where 

vi = i j *q.(cy)y.  

Fi = 11 R,kll2a - ( 1  R ; W X 1 1 2  

For i = l;.., m + 1, 

I O  

and so F E V -  and F E  W(a) .  
For the second part of the theorem, consider cy such that 

there exists v E W(cy) n v - .  This implies that there exists 7 
such that 

7*&. (a )~  I 0, i = l ; . . ,  m + 1. 

Choosing x = Vq gives 

~ ~ ~ ~ x ( ~ ~ c y  - I I R ~ M x ( ~ *  I 0, i = I ; . . ,  m + 1 

implying that 

~ ~ ~ ~ x l l c y +  I I I R , M X ~ ~ ,  i = I;. . ,  m + I .  

By construction X E  X and so x and cy1/’ are a feasible 
solution to the $ ( M ,  X) maximization. Therefore, cy I 

XY. b 
Corollary 4.9: 

$ ( M ,  X) = inf { a 1 / 2 1 w ( U ) n v - =  0) .  
Or20 

Fan and Tits I151 provide an algorithm to calculate p ( M ) ,  
based on the numerical range approach. Their algorithm 
requires that one calculate the minimum distance between the 
set W( cy) and the origin. To be applicable to $( M ,  X ), one 

“skewed.” Section VI will show that the solution of this 
skewed problem leads to a solution of the model validation 
problem posed in Section III. 

In fact, the same question can be asked for the p ( M )  case. 
One would like to be able to calculate a bound, denoted by 
p , ( M )  such that (referring to the generic system in Fig. l ) ,  
for all 11 w 11 I 1 ,  and all 1) A 1) I 1, the error e is bounded 

This section will outline the results that allow both the p 
and $ problems to be skewed. For full details and proofs, the 
reader is referred to Smith [l]. These results are included to 
illustrate that it is a simple matter to adjust the relative 
weighting between 11 w I I  and I(AII in both the p and $ 
problems. There is nothing fundamentally new in this ap- 
proach. The same results can be obtained by iteratively 
calculating p (or $) for a scaled problem. A simple bisection 
technique will provide the same answer. 

A .  Skewed p 

A framework is set up to consider the p problem when 
certain of the A blocks do not scale. The numerical range 
approach and algorithm for calculating p ( M )  provided by 
Fan and Tits [9] can also be applied to p , ( M ) .  

* ,  m + 1 to be divided into two 
disjoint sets: I, and j, where Z, may be empty. It will now 
be assumed that for iEZ,, IIAill I 1. Define a “ball” in 
which only certain of the A blocks are allowed to vary in size 

by Ilell I cc,(M)-’. 

Consider the integers 1, 

.(Ai) I 1, iEZ, 

5 ( A i )  I 6 ,  i e j ,  
must be able to calculate the minimum distance between 
W ( a )  and the negative quadrant v - .  The calculation of 

Now define denoted ps, by the following: 
- 

‘0 if no A EBLA solves det ( Z  + MA) = 0 $ ( M ,  X) is the subject of ongoing research. 

V. SKEWED p PROBLEMS otherwise 

I’ The above approaches to the model validation problem := min { 6 I 3A E BiA such that 
A E B ~  A 

det ( Z  + MA) = 0} 
have considered the means of finding a bound $ ( P ,  X), 
such that there exists a feasible ( w ,  A) with 

(1  w I I  I $($, T)-’, and ( ( A ( (  I $ ( p ,  X)-’. 
One can also consider the problem of finding the minimum 
norm w, given that A satisfies some a priori bound. The 
appropriate model validation problem can be stated as fol- 
lows. 

Problem 5. I (Model Validation - Minimum 11 w 11): 
Given a model P, with P ( P , ~ )  < 1, and an experimental 
datum ( U ,  y ) ,  what is the minimum 1) w 11, such that there 
exists A E BA satisfying 

Note that the size of A is constrained, but I( w (1 is to be 
minimized. A function $,(M, X )  will be defined such that 
there exists a feasible ( w ,  A) with 

11 w I I  I $,(F, X)-’, and ) ) A ) )  I 1. 

The subscript s is used to denote the fact that the problem is 

Two maximization problems are now introduced 

and 

Note that it is not necessary to restrict x to be on the unit 
sphere ( (1 x 11 = 1) as for any x meeting the above constraints 
ax, cy ~ ( 0 ,  00) also meets the constraints. However, the 
restriction to the unit sphere, and the compactness of the unit 
sphere make it clear that the maximum is achieved. 

For a finite matrix M ,  p ( M )  is also finite. This is no 
longer true for p, (M) .  If the A i  blocks with i ~ j ,  do not 
play a role in the equation det ( Z  + MA) = 0, then p , ( M )  
will be infinite. In other words, there is a choice of A i  with 
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i E I,,  11 A i  ( 1  I 1 ,  such that det ( I  + M A )  = 0 irrespective of 
the size of the A i  for i E f,. 

In the case where p,( M )  is finite, the above maximizations 
are indeed equivalent. This can be proven in a manner 
similar to that used by Fan and Tits [9] for the analogous 
p( M )  maximization problems. 

Theorem 5.2: If p,(M) is finite, then p,(M) = b,(M) = 

b m .  

B. A Geometric Interpretation 

p,( M )  problem. Define 
Now consider the application of the numerical range to the 

RTR,  - M*R;R,M, i E I, i ( Y R T R ~  - M*R:R~M, iEj , .  
%.(a) = 

The numerical range of N( a )  is defined as W( a )  

w(a) = {+; = x * q ( a ) x ,  IIXlI = I } .  

For each a ,  W(a)  is a set in RI"+'. For m I 2, this set 
is convex as the above construction guarantees that n L rn + 
1 .  Define c( a )  as the minimum distance between W( a )  and 
the origin. 

.(a) = min{l)vll I V E  ~ ( a ) } .  

It should be noted that for a < I,( M)',  it is not necessar- 
ily true that 0 E W(a) .  This may make the choice of a. 
difficult. In the case where I, = d, p , ( M )  = p ( M ) ,  and the 
obvious choice is to use the upper bound for p ( M ) :  a0 = 

When p J M )  is not finite, it is not possible to choose ao. 
If a. < p,(M>',  the algorithm may converge to an incorrect 
finite value. 

Critical to Algorithm 5.5 is the calculation of c(a).  In 
general this is still an unsolved problem. It is, however, easy 
to calculate the minimum point of a convex set. Define c'( a )  

c '(a) = min { I I v I I I v E c o [  ~ ( a ) ] } .  

Gilbert [16] provides an algorithm that will calculate c'(a). 
This is discussed by Doyle [17] and Packard [ll], both of 
whom provide a proof of convergence. 

Note that c'(a) I c(a)  and that W ( a )  being convex is 
sufficient, but not necessary, to guarantee that c'(a) = c(a). 
In practice, one can replace c(a)  in Algorithm 5.5 by c'(a). 
This converges to an upper bound for ps( M ) 2 .  In the case of 
three or fewer blocks, Lemma 4.6 illustrates that it will 
converge to p , ( ~ ) ' .  

This supports Doyle's [ 171 result that p( M )  can easily be 
calculated for three or fewer complex blocks ( m  I 2) .  The 
fact that this is also true for p s ( M )  is hardly surprising as 
p , ( M )  can be iteratively calculated from p ( M ) .  

D. A Skewed p(M, X) Problem 

$( M ,  T ), denoted here by $,( M ,  X ). 

a( M)'.  

by 

As in the p s ( M )  case, one can define a skewed version of 

Note that as e.( a)  is a continuous function of a ,  the norm 
is a continuous function of its argument, and the minimiza- 
tion is over a compact set, c(a) is a continuous function of 
a. The function c( a )  now provides an alternative characteri- 

Lemma 5.3: If p , ( M )  is finite, c ( ~ , ( M ) ~ )  = 0, and for 

Corollary 5.4: If p,(M) is finite, 

zation of p s ( M )  and will lead to an algorithm. $,( M ,  X )  := 

all a > p,(M)*, c(a)  > 0. 

p , ( ~ )  = inf{a'/210#W(p) forall p > a } .  
01 

C. An Algorithm for  ps(M) 

This is the same algorithm as that presented by Fan and 
Tits [15] for the calculation of p ( M ) .  The proof of conver- 
gence is also identical. This algorithm actually calculates 
b,(M). The assumption that p S ( M )  is finite, is disguised in 
step i. 

Algorithm 5.5 (p,(M)): 

i) Set a. 2 p . , ( ~ ) ~ .  
ii) aj+i = ai - c(aj) .  
iii) j = j + 1 .  Go to step ii). 
Lemma 5.6: The sequence { a j }  generated by Algorithm 

5.5 is monotonic nonincreasing and 

E. Application to the Minimum 1) w 11 Model Validation 
Problem 

The function $,( M ,  X) can be applied to Problem 5.1. 
Define I, = l ; . . ,  m and f, = rn + 1 .  In other words,-the 
scaling on the perturbation blocks is held fixed. Again, P is 
defined by ( 5 ) ,  and X by (4). The following theorem gives 
the bound on the smallest feasible 11 w 1 1 .  

Theorem 5.7: Assume that Assumption A0 holds, P is 
given by J5), and X is given by (4). 

If $JP, X) = 0, then no feasible ( w ,  A) for Problem 5.1 
exists. 

If $,(fi, X )  = a > 0, then there exists a feasible ( w ,  A) 
for Problem 5.1 with 

11 w I I  = Cy-', and IIAII I 1 .  

I1 1 
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Furthermore, there is no feasible (w, A) such that A E BA, 
and IIwJI < a-'. 

The assumption of Problem 5.1 that p ( P l l )  < 1 ,  and the 
restriction of A to A E BA obviates the need for inclusion of 
Assumption A1 in the above. 

F. A Numerical Range Function 
The $,(M, X )  calculation problem (13) is considered for 

a general matrix M and a subspace X. It is again assumed in 
the notation used in this section that the general problem has 
m + 1 norm constraints; in other words I, U I, = 
{ l ; . . ,  m + l } .  Define 

N , ( 4  = {N,1(aL..., & m + l ) ( 4 }  

where 

The numerical range of N,(a) is defined as W,(a) 

W,(a) = {vIv i  = v*N,i(a)v, I I v I I  = 1 ) -  (14) 

Note that the convexity properties (refer to Lemma 4.7) of 
W,( a) are the same as W( a). 

A lemma, analogous to Lemma 4.8 for $ ( M ,  X), and 
Lemma 5.3 for p, (M)  illustrates a direction that one might 
take in deriving an algorithm for $,( M ,  X ). 

Lemma 5.8: If a I $,(M, X ) 2 ,  then W,(a) n V - #  8,  
and if a > $,(M, X)2, then W,(a) r l  v - =  8. 

Corollary 5.9: 

As is the case for $ ( M ,  X), using Corollary 5.9 as the 
basis for an algorithm for $,( M ,  X ) relies upon being able 
to calculate the minimum distance between W,(a) and v-. 
As expected, $,(M, X )  can easily be bounded. 

Lemma 5.10: 

IC.,(M, X) I P,(M) .  

G. Approaches to the Calculation of $, 

The framework discussed above suggests that one should 
be able to calculate $, using an algorithm based on the Fan 
and Tits approach to the calculation p .  This is the subject of 
ongoing research. 

The function $, is defined in terms of an optimization 
problem. Another calculation approach is to apply standard 
nonlinear optimization techniques to the definition of $, 
given in (13). For simple block structures (two or less blocks 
with sufficient freedom in kernel of [P2 ,P22] )  the optimiza- 
tion is convex. 

Upper and lower bounds can readily be calculated for p .  
The lower bound is calculated via a power iteration. Apply- 
ing this to the $, is the subject of current research. The 

upper bound for p can be calculated by solving a linear 
matrix inequality (LMI) problem. The same is true of the $, 
case although the formulation of the LMI is now slightly 
more complicated. Newlin and Smith [18] discuss these 
calculation approaches in more detail. 

VI. MODEL VALIDATION FOR p / H, REVISITED 

The linear, time-invariant model validation problem posed 
in Problem 3.1 can now be studied in terms of the above 
constant matrix model validation problems. The following 
theorem addresses Problem 3.1. 

Assume that A0 holds at each frequency. If this is not the 
case then either no feasible ( w ( j o ) ,  A ( j w ) )  exists, or a 
unique w( jo) solves th_e constant matrix problem. If such a 
w ( j o )  exists then $, (P( jw) ,  X ( j c ~ ) ) ~  can be replaced by 
11 w ( j w )  I( in the following theorem. 

Theorem 6. I (Model Validatiop): Assume that, at each 
frequency, Assumption A0 holds, P ( j w )  is given by (5), and 
X( j w )  is given by (4). 

If 
1 

2 d w > 1  

then there is no w E BL, and A E BA, such that 

I-: $ , (p( jo) ,  x ( j w > )  

Proof of Theorem 6.1: Note that, by definition, 
$ , ( ~ ( j o ) ,  X(jw))- '  5 11 w(jo) l l ,  for any w ( j o )  satisfy- 
ing 

for some A ( j o )  E BA. Consequently, 

J - W  

for any (w, A) satisfying 

b 
To apply this theor_em, one typically selects a frequency 

grid, calculates $,( P(  jo), X( jo)) (or equivalently, the 
minimum 11 w ( j o )  1)  satisfying the constraints of the problem), 
and approximates the integration of Theorem 6.1 with a 
summation. 

Note that the $, problem, rather than the $ problem, is 
applicable here. In order to be assured of obtaining a bound 
for the minimum 11 w 11 signal, w € L 2 ,  one must bound the 
minimum 11 w(jo)ll at each frequency. 

It is also worth noting that Theorem 6.1 does not necessar- 
ily apply in the opposite direction. By solving a series of 
minimum 11 w ( j o )  11 problems one obtains complex valued 
w ( j w )  and A ( j w )  satisfying the constraints at each fre- 
quency. However this does not necessarily correspond to a 
causal A.  

The lower bound obtained from Theorem 6.1 is appropri- 
ate for the model validation problem as it still yields a 
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necessary condition for an uncertain model to describe a 
physical system. 

VII. CONCLUSIONS 

The model validation problem has been formulated for a 
generic robust control structure. The significance of the 
formulation given here is that the assumptions used are 
exactly the same as those required for the H , / p  synthesis 
methodology. It should be noted that using these assumptions 
imposes significant constraints on the type of experiment that 
can be considered. 

Two constant matrix model validation problems are stud- 
ied. The first is, “what is the smallest / )  w 11 and ) )  A ) )  
accounting for the datum?” A function $ ( M ,  X )  has been 
defined and shown to give the solution to the above problem 
when applied to a particular interconnection structure. A 
geometric interpretation allows one to see that $ ( M ,  X )  is 
very similar to p( M ) .  In particular, the convexity properties 
of W ( a )  (which lead to the upper bound being an equality 
for certain block structures) apply also to the $( M ,  X) case. 

Of perhaps more engineering significance is the second 
constant matrix problem: “What is the smallest (1 w (1 such 
that w and a A E BA,  account for the datum?” Skewed 
problems have been introduced for both p (  M )  and $( M ,  X ) 
and shown to lead to the solution of the minimum I( w I( 
model validation problem. Note that for both p , ( M )  and 
GS(M, X ) ,  the same result can be calculated iteratively with 
a scaled p ( M ) ,  or $ ( M ,  X )  problem. A number of ap- 
proaches to calculating $,(M, Y) have been outlined. It is 
no surprise that these are very similar to the approaches used 
for the calculation of p. 

The constant matrix model validation results are used to 
give a necessary test for a robust control model (in the H, / p  
framework) to account for an experimental datum. 

Several issues immediately arise as future research direc- 
tions. Algorithms to calculate (or bound) $ ( M ,  T), and 
possibly GS(M, X ) ,  require more work. Note that also that 
only full complex block structures have been studied. To be 
applicable to all possible robust control models, the results 
should be extended to more general structures. There are 
now many applications for which p synthesis controllers 
have been designed and the models used for the design can 
now be studied with the model validation approach. 

The formal approach to model validation given here can 
also be applied to other design methodologies. Research on 
the application to h, (discrete time) and I ,  methodologies is 
in progress. 

On a more long-term basis, it appears possible that this 
approach can be used to study the general problem of identi- 
fication of robust control models. Refer to Smith and Doyle 
[19] for further discussion on this issue. 
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