

Outline

- Not merely "complexity, networks, abstraction, recursion, modularity,..."
- But very specific forms of these that are needed for networks
- Emphasize fundamentals
- Illustrate with case studies and cartoons: Internet versus bacterial biosphere Operating systems Global brain architecture Smartgrid and cyberphysical

Next steps?

- New course this term? (CDS 213?)
- Discuss at 1pm
- Flesh out details
- Integrated control, comms, computing, thermo/statmech, optimization, games, etc
- Motivated by very generic network challenges

Network Math and Engineering (NetME) Challenges

- Predictive modeling, simulation, and analysis of complex systems in technology and nature
- Theoretical foundation for design of network
 architectures
- Balance rigor/relevance, integrative/coherent
- Model/simulate is critical but limited
 - Predicting rare but catastrophic events
 - Design, not merely analysis
 - Managing complexity and uncertainty

"Architecture"

- Most persistent, ubiquitous, and global features of organization
- Constrains what is possible for good or bad
- Platform that enables (or prevents) innovation, sustainability, etc,
- Internet, biology, energy, manufacturing, transportation, water, food, waste, law, etc
- Existing architectures are unsustainable
- Theoretical foundation is fragmented, incoherent, incomplete

Lots of Influences Not Referenced Properly in These Notes

- Biology/Medicine (Savageau, G&K, Mattick, Csete, Arkin, Alon, Caporale, de Duve, Exerc Physio, Acute Care, etc etc...)
- Internet (Kelly/Low, Willinger, Clark, Wroclawski, Day, Chang, etc etc)
- Architecture (Alexander, Salingeros,...)
- Aerospace (many, Maier is a good book)
- Philosophy/History (Fox Keller, Jablonka&Lamb)
- Physics/ecology (Carlson)
- Management (Baldwin,...)
- Resilience/Safety/Security Engineering/Economics (Wood, Anderson, Leveson, …)

Infrastructure networks?

- Power
- Transportation
- Water
- Waste
- Food
- Healthcare
- Finance

All examples of"bad" architectures:UnsustainableHard to fix

Where do we look for "good" examples?

Informative case studies in architecture

- Internet and related technology (OS)
- Systems biology (particularly, bacterial biosphere)
- System medicine and physiology
- Ecosystems (e.g. So Cal wildfire ecology)
- Aerospace systems
- Electronic Design Autom. (Platform Based Design)
- Multiscale physics (turbulence, stat mech)
- Misc: buildings/cities, Lego, clothing/fashion, barter/ markets/money/finance, social/political

- Successful architectures
- Robust, evolvable
- Universal, foundational
- Accessible, familiar
- Unresolved challenges
- New theoretical frameworks
- Boringly retro?

Simplest case studies

Bacteria

Internet

• Universal, foundational

• Universal, foundational

Two lines of research:

1. Patch the existing Internet architecture so it handles its new roles

Technosphere

Internet

- Real time
- Control over (not just of) networks
- Action in the physical world
- Human collaborators and adversaries
- Net-centric *everything*

Modern theory and the Internet

Levels of understanding

Verbal/cartoon

Data and statistics

Modeling and simulation

Analysis

Synthesis

Topics

Architecture

Recent progress (1995-)

	Traffic		Topology		C&D		Layering	Architect.
Cartoon								?
Data/stat								
Mod/sim								
Analysis								
Synthesis								

Recent progress

	Traffic	Topology	C&D	Layering	Architect.
Cartoon					
Data/stat					
Mod/sim					
Analysis					
Synthesis					

Architecture facilitates arbitrary graphs.

Diverse hardware

Recent progress (1995-)

	Traffic	affic Topology		Layering	Architect.
Cartoon					
Data/stat					
Mod/sim					
Analysis					
Synthesis					

Theoretical framework: Constraints that deconstrain

- Layering as optimization decomposition
- Optimal control
- Robust control
- Game theory
- Network coding
- Recursive layers?

Cyber-Physical Theories

- Thermodynamics
- Communications
- Control
- Computation

Cyber

Physical

- Thermodynamics
- Communications
- Control
- Computation

- Thermodynamics
- Communications
- Control
- Computation

Internet

Bacteria

Case studies

Cyber

Physical

- Thermodynamics
- Communications
- Control
- Computation

- Thermodynamics
- Communications
- Control
- Computation

Promising unifications

Two lines of research:

- 1. Patch the existing Internet architecture
- 2. Fundamentally rethink network architecture

Architecture?

	Tra	ffic	Торо	Topology		C&D		ring	Architect.
Cartoon									?
Data/stat									
Mod/sim									
Analysis									
Synthesis		•				/			

Fundamentally rethink network architecture

Biology versus the Internet

Similarities

- Evolvable architecture
- Robust yet fragile
- Constraints/deconstrain
- Layering, modularity
- Hourglass with bowties
- Feedback
- Dynamic, stochastic
- Distributed/decentralized
- *Not* scale-free, edge-of-chaos, self-organized criticality, etc

Differences

- Metabolism
- Materials and energy
- Autocatalytic feedback
- Feedback complexity
- Development and regeneration
- >4B years of evolution
- How the parts work?

Biology versus the Internet

Similarities

- Evolvable architecture
- Robust yet fragile
- Constraints/deconstrain
- Layering, modularity
- Hourglass with bowties
- Feedback
- Dynamics
- Distributed/decentralized
- *Not* scale-free, edge-of-chaos, self-organized criticality, etc

Differences

- Metabolism
- Materials and energy
- Autocatalytic feedback
- Feedback complexity
- Development and regeneration
- >4B years of evolution

Focus on bacterial biosphere

Network architecture?

Recursive control structure

Reactions

Flow

In the real (vs virtual) world

What matters:

• Action

What doesn't:

- Data
- Information
- Computation
- Learning
- Decision

Two lines of research:

- 1. Patch the existing Internet architecture
- 2. Fundamentally rethink network architecture

"return to fundamentals"

Platform Based Design

Design heuristics (KISS or E2E)

My first mistake...

I'm not going to do a very good job of drawing the HW
Actually I won't do a good job of drawing anything but I think the hardware will be really bad.

• No rings of hardware.

Within a single processor

The kernel functions are

- Data transfer (fastest time scale)
 - Within memory (and memory hierarchies)
 - Between devices and memory
 - Between memory and computing elements
- Control (middle time scales)
 - Scheduling/Multiplexing resources
 - In time and space
- Management (slowest time scale)
 - What resources are available?
 - Where are they?

Layers have sublayers

Want them all to behave similarly.

Layers have sublayers

... but it's not clear how to draw them.

What happens in a computer *system*?

Any layer's functions are

- Data transfer (fastest time scale)
 - Within memory (and memory hierarchies)
 - Between devices and memory
 - Between memory and computing elements
 - Between virtualized resources (in higher layers)
- Control (middle time scales)
 - Scheduling/Multiplexing resources
 - In time and space
 - Real and virtualized
- Management (slowest time scale)
 - *What* resources are available?
 - Where are they?

Might be all in the same "box".

The only "real" signals are not shown

Expand dimensions

Computational hardware substrates

Existing hard limits have restrictive assumptions and few dimensions

- Thermodynamics (Carnot)
- Communications (Shannon)
- Control (Bode)

Fundamental limit ental • Computation (Turing)

New, promising unifications but need much more

Collapse dimensions

Collapse dimensions

Fast, Efficient

[a system] can be *robust* for a given [**property**] and a set of [**perturbations**] Yet be *fragile for* a different [**property**] or [**perturbation**]

Log(robustness)

Question: Human complexity

Robust

- ③ Efficient, flexible metabolism
- © Regeneration & renewal
- ③ Rich microbial symbionts
- Immune systems
- Complex societies
- Advanced technologies

Yet Fragile

- $\ensuremath{\mathfrak{S}}$ Obesity and diabetes
- \otimes Cancer
- $\ensuremath{\mathfrak{S}}$ Parasites, infection
- ⊗ Inflammation, Auto-Im.
- Epidemics, war, ...
- ▲ Catastrophic failures

Mechanism?

Robust

- ③ Efficient, flexible metabolism
- © Regeneration & renewal
 - Sat accumulation
 - ③ Insulin resistance
 - Inflammation

Fluctuating energy

Yet Fragile

- Obesity and diabetes
- $\ensuremath{\mathfrak{S}}$ Cancer
 - ℬ Fat accumulation
 - Insulin resistance
 - $\ensuremath{\mathfrak{S}}$ Inflammation

Static energy

Robust

Implications/ Generalizations

- © Efficient, flexible metabolism
- © Rich microbial symbionts
- Immune systems
- © Regeneration & renewal
- Complex societies
- Advanced technologies

Yet Fragile

- Obesity and diabetes
- ② Parasites, infection
- ☺ Inflammation, Auto-Im.
- 😕 Cancer
- Epidemics, war, ...
- Catastrophic failures
- Fragility = Hijacking, side effects, unintended... of mechanisms evolved for robustness
- Complexity is driven by control, robust/fragile tradeoffs
- Math: New robust/fragile conservation laws
- Resilience/safety/security Engineering/Economics: "Human error" and "human nature" is often a symptom of bad system architecture

Other dimensions

Robust

- Secure
- Scalable
- Verifiable
- Evolvable
- Maintainable
- Designable

Fragile

- Insecure
- Not scalable
- Unverifiable
- Frozen

•..

Collapse other dimensions

Log(fragility)

≯

Higher layer

Robust

- Scalable
- Verifiable
- Evolvable
- Maintainable
- Designable

Lower layer

Fragile

- Not scalable
- Unverifiable
- Frozen

. . .

Separate logical names and physical addresses

Naming and addressing are important topics in OS

Needs to be an even richer topic in networking

So, finally, let's look at a minimal network

Might be all in the same "box".

A network with another "box"...

A minimal network without a NIC.

Mgmt and Cntrl become even more complex

What is a NIC?

A minimal network with a NIC

Different scopes

DIF= Distributed IPC Facility

How many layers?

As many as you need to map distribute applications

Onto distributed resources

Naming and addressing

- need to match their layer
- translate/resolve between layers
- not be exposed outside layer

Architecture issues

- DNS
- NATS
- Firewalls
- Multihoming
- Mobility
- Routing table size
- Overlays

Next steps?

- New course this term? (CDS 213?)
- Discuss at 1pm
- Flesh out details
- Integrated control, comms, computing, thermo/statmech, optimization, games, etc
- Motivated by very generic network challenges

Next steps?

Start with this picture from PNA

And categorize these

- Delimiting
- Initial State Synch
- Policy Selection
- Addressing
- Flow/Connection Identifier
- Relaying
- Multiplexing
- Ordering
- Frag./Reassembly
- Combining/Separation
- Data Corruption

- Lost /Duplicate
 Detection
- Flow Control
- Forward Error Cor.
- Ack/Retran Control
- Compression
- Authentication
- Access Control
- Integrity
- Confidentiality
- Nonrepudiation
- Activity

IPC Mgmt

Routing Policy Selection Flow/Connection Identifier Access Control

Data Corruption TTL Forward Error Cor.

In the real (vs virtual) world

What matters:

• Action

What doesn't:

- Data
- Information
- Computation
- Learning
- Decision

Embedded

Networked embedded

Meta-layering of cyber-phys control

Micro-layering of D-IPC-F

Biology versus the Internet

Similarities

- Evolvable architecture
- Robust yet fragile
- Constraints/deconstrain
- Layering, modularity
- Hourglass with bowties
- Feedback
- Dynamics
- Distributed/decentralized
- *Not* scale-free, edge-of-chaos, selforganized criticality, etc

Differences

- Metabolism
- Materials and energy
- Autocatalytic feedback
- Feedback complexity
- Development and regeneration
- >4B years of evolution

Focus on bacterial biosphere

Control of the Internet **Packets** receiver source control packets

Autocatalytic feedback

What theory is relevant to these more complex feedback systems?

Inside every cell

Core metabolic bowtie

Skipping the "OS" story, right to networks

If we drew the feedback loops the

Running only the top layers

Mature red blood cells live 120 days

> "metabolism first" origins of life?

Reactions
Flow/error
Protein level

Reactions Flow/error

RNA level

Reactions

Flow/error

DNA level

Top to bottom

- Metabolically costly but fast to cheap but slow
- Special enzymes to general polymerases
- Allostery to regulated recruitment
- Analog to digital
- High molecule count to low (noise)

Rich Tradeoffs

Networked embedded

Meta-layering of cyber-phys control

"Architecture" in practice

- Internet, biology, energy, manufacturing, transportation, water, food, waste, law, etc
- Many architectures are unsustainable/hard to fix What does "architecture" mean here?
- Persistent, ubiquitous, global features
- Constrains the possible (for good or bad)
- Enables/prevents innovation, sustainability, etc,
- Theory is fragmented, incoherent, incomplete
- Needs rigor and relevance
- "Constraints that deconstrain" and "facilitated variation" (Gerhart and Kirschner)

Next steps?

- New course this term? (CDS 213?)
- Discuss at 1pm
- Flesh out details
- Integrated control, comms, computing, thermo/statmech, optimization, games, etc
- Motivated by very generic network challenges